Advertisement

Adding Diversity to Two Multiobjective Constructive Metaheuristics for Time and Space Assembly Line Balancing

  • Manuel Chica
  • Óscar Cordón
  • Sergio Damas
  • Joaquín Bautista

Abstract

We present a new mechanism to introduce diversity into two multiobjective approaches based on ant colony optimisation and randomised greedy algorithms to solve a more realistic extension of a classical industrial problem: time and space assembly line balancing. Promising results are shown after applying the designed constructive metaheuristics to ten real-like problem instances.

Keywords

Time and Space Assembly Line Balancing Problem Constructive Metaheuristics Multiobjective Optimisation Automotive Industry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barán, B., Schaerer, M.: A multiobjective ant colony system for vehicle routing problem with time windows. In: 21st IASTED Conference, Innsbruck Germany, pp. 97–102 (2003)Google Scholar
  2. 2.
    Bautista, J., Pereira, J.: Ant algorithms for a time and space constrained assembly line balancing problem. European Journal of Operational Research 177, 2016–2032 (2007)zbMATHCrossRefGoogle Scholar
  3. 3.
    Baybars, I.: A survey of exact algorithms for the simple assembly line balancing problem. Management Science 32(8), 909–932 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Chankong, V., Haimes, Y.Y.: Multiobjective Decision Making Theory and Methodology. North-Holland, Amsterdam (1983)zbMATHGoogle Scholar
  5. 5.
    Chica, M., Cordón, O., Damas, S., Bautista, J.: Multi-objective, constructive heuristics for the 1/3 variant of the time and space assembly line balancing problem: ACO and randomised greedy. Tech. Rep. AFE-09-01, European Centre for Soft Computing, Asturias (Spain) (submitted to Information Sciences) (2009)Google Scholar
  6. 6.
    Chica, M., Cordón, O., Damas, S., Bautista, J.: A multiobjective GRASP for the 1/3 variant of the time and space assembly line balancing problem. In: 23rd International Conference on Industrial, Engineering & Other Applications of Applied Intelligent Systems (IEA-AIE 2010), Cordoba, Spain (to appear, 2010)Google Scholar
  7. 7.
    Chica, M., Cordón, O., Damas, S., Bautista, J., Pereira, J.: A multiobjective ant colony optimization algorithm for the 1/3 variant of the time and space assembly line balancing problem. In: 12th International Conference on Processing and Management of Uncertainty in Knowledge-based Systems (IPMU), Málaga (Spain), pp. 1454–1461 (2008)Google Scholar
  8. 8.
    Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-objective Problems, 2nd edn. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  9. 9.
    Dorigo, M., Gambardella, L.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation 1(1), 53–66 (1997)CrossRefGoogle Scholar
  10. 10.
    Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)zbMATHGoogle Scholar
  11. 11.
    Feo, T.A., Resende, M.G.C.: Greedy randomized adaptive search procedures. Journal of Global Optimization 6, 109–133 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    García Martínez, C., Cordón, O., Herrera, F.: A taxonomy and an empirical analysis of multiple objective ant colony optimization algorithms for the bi-criteria TSP. European Journal of Operational Research 180, 116–148 (2007)zbMATHCrossRefGoogle Scholar
  13. 13.
    Glover, F., Kochenberger, G.A. (eds.): Handbook of Metaheuristics. Kluwer Academic, Dordrecht (2003)zbMATHGoogle Scholar
  14. 14.
    Middendorf, M., Reischle, F., Schmeck, H.: Multi colony ant algorithms. Journal of Heuristics 8(3), 305–320 (2002)zbMATHCrossRefGoogle Scholar
  15. 15.
    Scholl, A.: Balancing and Sequencing of Assembly Lines, 2nd edn. Physica-Verlag, Heidelberg (1999)Google Scholar
  16. 16.
    Scholl, A., Becker, C.: State-of-the-art exact and heuristic solution procedures for simple assembly line balancing. European Journal of Operational Research 168(3), 666–693 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Transactions on Evolutionary Computation 7(2), 117–132 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Manuel Chica
    • 1
  • Óscar Cordón
    • 1
  • Sergio Damas
    • 1
  • Joaquín Bautista
    • 2
    • 3
  1. 1.European Centre for Soft ComputingMieresSpain
  2. 2.Universitat Politècnica de CatalunyaBarcelonaSpain
  3. 3.Nissan Chair 

Personalised recommendations