CanSpeak: A Customizable Speech Interface for People with Dysarthric Speech

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6179)


Current Automatic Speech Recognition (ASR) systems designed to recognize dysarthric speech require an investment in training that involves considerable effort and must be repeated if speech patterns change. We present CanSpeak, a customizable speech recognition interface that does not require automatic training and uses a list of keywords customized for each user. We conducted a preliminary user study with four subjects with dysarthric speech. Customizing the keyword lists doubled the accuracy rate of the system for two of the subjects whose parents and caregivers participated in the customizing task. For the other two subjects only small improvements were observed.


Speech Recognition Web Accessibility Dysarthric Speech 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blaney, B., Wilson, J.: Acoustic Variability in Dysarthria and Computer Speech Recognition. Clinical Linguistics and Phonetics 14(4), 307–327 (2000)CrossRefGoogle Scholar
  2. 2.
    Chen, F., Kostov, A.: Optimization of Dysarthric Speech Recognition. In: Proc. of IEEE/EMBS 1997, pp. 1436–1439. IEEE Press, New York (1997)Google Scholar
  3. 3.
    Clark, J.A., Roemer, R.B.: Voice Controller Wheelchair. Archives of Physical Medicine & Rehabilitation 58(4), 169–175 (1977)Google Scholar
  4. 4.
    Cohen, A., Graupe, D.: Speech Recognition and Control System for the Severely Disabled. Journal of Biomedical Engineering 2(2), 97–107 (1980)CrossRefGoogle Scholar
  5. 5.
    Franco, H., Abrash, V., Precoda, K., Bratt, H., Rao, R., Butzberger, J., Rossier, R., Cesari, F.: The SRI EduSpeak System: Recognition and Pronunciation Scoring for Language Learning. In: Proc. of InSTL 2000, pp. 123–128 (2000)Google Scholar
  6. 6.
    Fried-Oken, M.: Voice Recognition Device as a Computer Interface for Motor and Speech Impaired People. Archives of Physical Medicine and Rehabilitation 34(3), 678–681 (1985)Google Scholar
  7. 7.
    Grammenos, D., Savidis, A., Georgalis, Y., Stephanidis, C.: Access Invaders: Developing a Universally Accessible Action Game. In: Miesenberger, K., Klaus, J., Zagler, W.L., Karshmer, A.I. (eds.) ICCHP 2006. LNCS, vol. 4061, pp. 388–395. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Green, P., Carmichael, J., Hatzis, A., Enderby, P., Hawley, M., Parker, M.: Automatic Speech Recognition with Sparse Training Data for Dysarthric Speakers. In: Proc. of EUROSPEECH 2003, pp. 1189–1192 (2003)Google Scholar
  9. 9.
    Hasegawa-Johnson, M., Gunderson, J., Perlman, A., Huang, T.: HMM-Based and SVM-Based Recognition of the Speech of Talkers with Spastic Dysarthria. In: Proc. of ICASSP 2006, pp. 1060–1063. IEEE Press, New York (2006)Google Scholar
  10. 10.
    Hawley, M., Enderby, P., Green, P., Brownsell, S., Hatzis, A., Parker, M., Carmichael, J., Cunningham, M., O’Neill, P., Palmer, R.: STARDUST:Speech Training and Recognition for Dysarthric Users of Assistive Technology. In: Craddock, G.M., McCormack, L.P., Reilly, R.B., Knops, H. (eds.) Assistive Technology – Shaping the Future, pp. 959–964. IOS Press, Amsterdam (2003)Google Scholar
  11. 11.
    Hawley, M., Enderby, P., Green, P., Cunningham, S., Palmer, R.: Development of a Voice-Input Voice-Output Communication Aid (VIVOCA) for People with Severe Dysarthria. In: Craddock, G.M., McCormack, L.P., Reilly, R.B., Knops, H. (eds.) Assistive Technology – Shaping the Future, pp. 882–885. IOS Press, Amsterdam (2003)Google Scholar
  12. 12.
    Kawai, S., Aida, H., Saito, T.: Designing Interface Toolkit with Dynamic Selectable Modality. In: Proc. of ASSETS 1996, pp. 72–79. ACM Press, New York (1996)Google Scholar
  13. 13.
    Kotler, A., Thomas-Stonell, N.: Effects of Speech Training on the Accuracy of Speech Recognition for an Individual with Speech Impairment. Journal of Augmentative and Alternative Communication 13(2), 71–80 (1997)CrossRefGoogle Scholar
  14. 14.
    Manasse, N.J., Hux, K., Rankin-Erickson, J.L.: Speech Recognition Training for Enhancing Written Language Generation by a Traumatic Brain Injury Survivor. Brain Injury 14(11), 1015–1034 (2000)CrossRefGoogle Scholar
  15. 15.
    Menéndez-Pidal, X., Polikoff, J.B., Peters, S.M., Leonzio, J.E., Bunnell, H.T.: The Nemours Database of Dysarthric Speech. In: Proc. of ICSLP 1996, pp. 1962–1965. IEEE Press, New York (1996)Google Scholar
  16. 16.
    Netsell, R., Abbs, J.: Acoustic Characteristics of Dysarthria Associated with Cerebellar Disease. Journal of Speech and Hearing Research 22, 627–648 (1997)Google Scholar
  17. 17.
    Patel, R., DiCicco, T.M.: Automatic Landmark Analysis of Dysartheric Speech. Journal of Medical Speech-Language Pathology 16(4), 221–224 (2008)Google Scholar
  18. 18.
    Raghavendra, P., Rosengren, E., Hunnicutt, S.: An Investigation of two Speech Recognition Systems with Dysarthric Speech as Input. In: Proc. of ISSAC 1994, pp. 479–481 (1994)Google Scholar
  19. 19.
    Rosen, K., Yampolsky, S.: Automatic Speech Recognition and a Review of its Functioning with Dysarthric Speech. Journal of Augmentative and Alternative Communication 16(1), 48–60 (2000)CrossRefGoogle Scholar
  20. 20.
    Rosengren, E., Raghavendra, P., Hunnicut, S.: How Does Automatic Speech Recognition Handle Severely Dysarthric Speech? In: Porrero, P., Puig de la Bellacasa, R. (eds.) European Context for Assistive Technology, pp. 336–339. IOS Press, Amsterdam (1995)Google Scholar
  21. 21.
    Spalteholz, L., Lin, K.F., Livingston, N., Hamidi, F.: KeySurf: A Character Controlled Browser for People with Physical Disabilities.. In: Proc. of WWW 2008, pp. 31–39. ACM Press, New York (2008)Google Scholar
  22. 22.
    Walker, W., Lamere, P., Kwok, P., Raj, B., Singh, R., Gouvea, E., Wolf, P., Woelfel, J.: Sphinx-4: A Flexible Open Source Framework for Speech Recognition. Technical report, Sun Microsystems (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringYork UniversityTorontoCanada
  2. 2.CanAssist, University of VictoriaVictoriaCanada

Personalised recommendations