Optimization Criteria for Human Trajectory Formation in Dynamic Virtual Environments

  • Sebastian Albrecht
  • Carolina Passenberg
  • Marion Sobotka
  • Angelika Peer
  • Martin Buss
  • Michael Ulbrich
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6192)

Abstract

Which criteria determine the formation of rest-to-rest arm movements when interacting with virtual mass-damper dynamics? A novel bilevel optimization approach is used to find the optimal linear combination of common optimization criteria for human trajectory formation such that the resulting trajectory comes closest to the human-performed one. The goal is to utilize this optimal combination to predict human motions in robot control. Experimental results show that subject-dependent criteria combinations can be found for different dynamics.

Keywords

Human trajectory formation Bilevel optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albrecht, S., Sobotka, M., Ulbrich, M.: A bilevel optimization approach to obtain optimal cost functions for human arm-movements. Preprint in preparation, Fakultät für Mathematik, TU München (2010)Google Scholar
  2. 2.
    Corteville, B., Aertbelien, E., Bruyninckx, H., De Schutter, J., Van Brussel, H.: Human-inspired robot assistant for fast point-to-point movements. In: IEEE International Conference on Robotics and Automation, pp. 3639–3644 (2007)Google Scholar
  3. 3.
    Flash, T., Hogan, N.: The coordination of arm movements: An experimentally confirmed mathematical model. The Journal of Neuroscience 5, 1688–1703 (1985)Google Scholar
  4. 4.
    Luo, Z., Svinin, M., Ohta, K., Odashima, T., Hosoe, S.: On optimality of human arm movements. In: IEEE International Conference on Robotics and Biomimetics, ROBIO 2004, pp. 256–261 (August 2004)Google Scholar
  5. 5.
    Maeda, Y., Hara, T., Arai, T.: Human-robot cooperative manipulation with motion estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 4, pp. 2240–2245 (2001)Google Scholar
  6. 6.
    Peer, A., Buss, M.: Robust stability analysis of a bilateral teleoperation system using the parameter space approach. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2350–2356 (September 2008)Google Scholar
  7. 7.
    Smith, C., Christensen, H.I.: A minimum jerk predictor for teleoperation with variable time delay. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5621–5627 (2009)Google Scholar
  8. 8.
    Stroeve, S.: Impedance characteristics of neuromusculoskeletal model of the human arm. Biological Cybernetics 81, 475–494 (1999)CrossRefMATHGoogle Scholar
  9. 9.
    Svinin, M., Goncharenko, I., Luo, Z., Hosoe, S.: Modeling of human-like reaching movements in the manipulation of flexible objects. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 549–555 (2006)Google Scholar
  10. 10.
    Uno, Y., Kawato, M., Suzuki, R.: Formation and control of optimal trajectory in human mulitjoint arm movements. Biological Cybernetics 61, 89–101 (1989)CrossRefGoogle Scholar
  11. 11.
    Wächter, A., Biegler, L.T.: Line search filter methods for nonlinear programming: Local convergence. SIAM Journal on Optimization 16(1), 32–48 (2005)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Weber, C., Nitsch, V., Unterhinninghofen, U., Färber, B., Buss, M.: Position and force augmentation in a telepresence system and their effects on perceived realism. In: WorldHaptics, pp. 226–231 (2009)Google Scholar
  13. 13.
    Winter, D.: Biomechanics and motor control of human movement. Wiley, Chichester (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Sebastian Albrecht
    • 1
  • Carolina Passenberg
    • 2
  • Marion Sobotka
    • 2
  • Angelika Peer
    • 2
  • Martin Buss
    • 2
  • Michael Ulbrich
    • 1
  1. 1.Institute for Mathematical OptimizationGermany
  2. 2.Institute of Automatic Control EngineeringTechnische Universität MünchenGermany

Personalised recommendations