Dimensional Reduction of High-Frequency Accelerations for Haptic Rendering

  • Nils Landin
  • Joseph M. Romano
  • William McMahan
  • Katherine J. Kuchenbecker
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6192)

Abstract

Haptics research has seen several recent efforts at understanding and recreating real vibrations to improve the quality of haptic feedback in both virtual environments and teleoperation. To simplify the modeling process and enable the use of single-axis actuators, these previous efforts have used just one axis of a three-dimensional vibration signal, even though the main vibration mechanoreceptors in the hand are know to detect vibrations in all directions. Furthermore, the fact that these mechanoreceptors are largely insensitive to the direction of high-frequency vibrations points to the existence of a transformation that can reduce three-dimensional high-frequency vibration signals to a one-dimensional signal without appreciable perceptual degradation. After formalizing the requirements for this transformation, this paper describes and compares several candidate methods of varying degrees of sophistication, culminating in a novel frequency-domain solution that performs very well on our chosen metrics.

Keywords

haptic feedback vibrations measurement-based modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bell, J., Bolanowski, S., Holmes, M.H.: The structure and function of Pacinian corpuscles: A review. Progress in Neurobiology 42(1), 79–128 (1994)CrossRefGoogle Scholar
  2. 2.
    Bensmaïa, S., Hollins, M., Yau, J.: Vibrotactile intensity and frequency information in the Pacinian system: A psychophysical model. Perception and Psychophysics 67(5), 828–841 (2005)CrossRefGoogle Scholar
  3. 3.
    Brisben, A.J., Hsiao, S.S., Johnson, K.O.: Detection of vibration transmitted through an object grasped in the hand. Journal of Neurophysiology 81(4), 1548–1558 (1999)Google Scholar
  4. 4.
    Guruswamy, V.L., Lang, J., Lee, W.S.: Modelling of haptic vibration textures with infinite-impulse-response filters. In: Proc. IEEE International Workshop on Haptic Audio Visual Environments and their Applications, pp. 105–110 (2009)Google Scholar
  5. 5.
    Johnson, K.O.: The roles and functions of cutaneous mechanoreceptors. Current Opinion in Neurobiology 11, 455–461 (2001)CrossRefGoogle Scholar
  6. 6.
    Klatzky, R.L., Lederman, S.J.: Perceiving object properties through a rigid link. In: Lin, M., Otaduy, M. (eds.) Haptic Rendering: Algorithms and Applications, ch. 1, pp. 7–19. A. K. Peters (2008)Google Scholar
  7. 7.
    Kontarinis, D.A., Howe, R.D.: Tactile display of vibratory information in teleoperation and virtual environments. Presence: Teleoperators and Virtual Environments 4(4), 387–402 (1995)CrossRefGoogle Scholar
  8. 8.
    Kuchenbecker, K.J., Fiene, J.P., Niemeyer, G.: Improving contact realism through event-based haptic feedback. IEEE Transactions on Visualization and Computer Graphics 12(2), 219–230 (2006)CrossRefGoogle Scholar
  9. 9.
    Kuchenbecker, K.J., Romano, J.M., McMahan, W.: Haptography: Capturing and recreating the rich feel of real surfaces. In: Proc. International Symposium on Robotics Research (August 2009)Google Scholar
  10. 10.
    McMahan, W., Kuchenbecker, K.J.: Haptic display of realistic tool contact via dynamically compensated control of a dedicated actuator. In: Proc. IEEE/RSJ International Conference on Intelligent RObots and Systems, pp. 3171–3177 (October 2009)Google Scholar
  11. 11.
    McMahan, W., Romano, J.M., Rahuman, A.M.A., Kuchenbecker, K.J.: High frequency acceleration feedback significantly increases the realism of haptically rendered textured surfaces. In: Proc. IEEE Haptics Symposium, pp. 141–148 (March 2010)Google Scholar
  12. 12.
    Okamura, A.M., Cutkosky, M.R., Dennerlein, J.T.: Reality-based models for vibration feedback in virtual environments. IEEE/ASME Transactions on Mechatronics 6(3), 245–252 (2001)CrossRefGoogle Scholar
  13. 13.
    Romano, J.M., Yoshioka, T., Kuchenbecker, K.J.: Automatic filter design for synthesis of haptic textures from recorded acceleration data. In: IEEE International Conference on Robotics and Automation, May 2010, pp. 1815–1821 (2010)Google Scholar
  14. 14.
    Vogels, I.M.L.C.: Detection of temporal delays in visual-haptic interfaces. Human Factors 46(1), 118–134 (2004)CrossRefGoogle Scholar
  15. 15.
    Yao, H.Y., Hayward, V., Ellis, R.E.: A tactile enhancement instrument for minimally invasive surgery. Computer-Aided Surgery 10(4), 233–239 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Nils Landin
    • 1
  • Joseph M. Romano
    • 2
  • William McMahan
    • 2
  • Katherine J. Kuchenbecker
    • 2
  1. 1.KTH Royal Institute of TechnologyStockholmSweden
  2. 2.University of PennsylvaniaPhiladelphiaUSA

Personalised recommendations