A Novel Tactile Sensor for Detecting Lumps in Breast Tissue

  • Mehmet Ayyildiz
  • Burak Guclu
  • Mustafa Z. Yildiz
  • Cagatay Basdogan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6191)


We developed a compact tactile sensor in order to guide the clinician or the self-user for non-invasive detection of lumps. The new design has an advantage over the existing discrete tactile sensors and detection methods by efficiently sensing force distribution over an area without any side effects. The sensor consists of 10×10 infrared emitter-detector pairs, a silicon-rubber elastic pad, and a contoured tactile interface (25x21 moving pins) for palpating three-dimensional objects. To demonstrate the practical use of the sensor, first a cylindrical tissue-like silicon phantom was prepared, then a 13 mm diameter rigid spherical object was placed at varying depths of 0-20 mm to simulate cancerous lumps in breast tissue, and finally the tactile sensor was systematically pressed on the phantom to successfully detect the lumps for compression depths of 10-24 mm. The location and the estimated radius of each lump were calculated from the recorded tactile images.


Optical array sensor lump detection breast cancer tactile mapping artificial palpation haptics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Organization, W. H. World Health Statistics 2009. World Health Organization, Geneva (2009)Google Scholar
  2. 2.
    Ferlay, J., Autier, P., Boniol, M., Heanue, M., Colombet, M., Boyle, P.: Estimates of the cancer incidence and mortality in Europe in 2006. Ann Oncol. 18(3), 581–592 (2007)CrossRefGoogle Scholar
  3. 3.
    Sarvazyan, A., Egorov, V.: Cost-Effective Screening for Breast Cancer Worldwide: Current State and Future Directions. Breast Cancer: Basic and Clinical Research, 91–99 (2008)Google Scholar
  4. 4.
    Lang, P.: Optical Tactile Sensor for Medical Palpation. In: The Thirty-Fourth London District Science and Technology Conference, pp. 1–5 (March 2004)Google Scholar
  5. 5.
    Wang, Y., Nguyen, C., Srikanchana, R., Geng, Z., Freedman, M.T.: Tactile Mapping of Palpable Abnormalities for Breast Cancer Diagnosis. In: Proc. of the Int. Conf. on Robotics and Automation, pp. 1305–1309 (May 1999)Google Scholar
  6. 6.
    Zeng, J., Wang, Y., Freedman, M.T., Mun, S.K.: Finger Tracking for Breast Palpation Quantification using Color Image Features. SPIE J. of Opt. Eng. 36(12), 3455–3461 (1997)CrossRefGoogle Scholar
  7. 7.
    Haagensen, C.D.: Diseases of the Breast, 3rd edn. Saunders, Philadelphia (1986)Google Scholar
  8. 8.
    Kitagawa, M., Okamura, A.M., Bertha, B.T., Gott, V.L., Baumgartner, W.A.: Analysis of Suture Manipulation Forces for Teleoperation with Force Feedback. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2488, pp. 155–162. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Ohtsuka, T., Furuse, A., Kohno, T., Nakajima, J., Yagyu, K., Omata, S.: New Tactile Sensor Techniques for Localization of Pulmonary Nodules. International Surgery 82, 12–14 (1997)Google Scholar
  10. 10.
    Wellman, P.S., Dalton, E.P., Krag, D., Kern, K.A., Howe, R.D.: Tactile Imaging of Breast Masses: First Clinical Report. Archives of Surgery 136, 204–208 (2001)CrossRefGoogle Scholar
  11. 11.
    Carmichael, A., Sami, A., Dixon, J.: Breast cancer risk among the survivors of atomic bomb and patients exposed to therapeutic ionising radiation. European Journal of Surgical Oncology 29(5), 475–479 Google Scholar
  12. 12.
    Shellock, F.G.: Biomedical Implants and Devices: Assessment of Magnetic Field Interactions with a 3.0-Tesla MR System. Journal Of Magnetic Resonance Imaging (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Mehmet Ayyildiz
    • 1
  • Burak Guclu
    • 2
  • Mustafa Z. Yildiz
    • 2
  • Cagatay Basdogan
    • 1
  1. 1.College of EngineeringKoc UniversityIstanbulTurkey
  2. 2.Biomedical Engineering InstituteBoğaziçi UniversityIstanbulTurkey

Personalised recommendations