VerroTouch: High-Frequency Acceleration Feedback for Telerobotic Surgery

  • Katherine J. Kuchenbecker
  • Jamie Gewirtz
  • William McMahan
  • Dorsey Standish
  • Paul Martin
  • Jonathan Bohren
  • Pierre J. Mendoza
  • David I. Lee
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6191)

Abstract

The Intuitive da Vinci system enables surgeons to see and manipulate structures deep within the body via tiny incisions. Though the robotic tools mimic one’s hand motions, surgeons cannot feel what the tools are touching, a striking contrast to non-robotic techniques. We have developed a new method for partially restoring this lost sense of touch. Our VerroTouch system measures the vibrations caused by tool contact and immediately recreates them on the master handles for the surgeon to feel. This augmentation enables the surgeon to feel the texture of rough surfaces, the start and end of contact with manipulated objects, and other important tactile events. While it does not provide low frequency forces, we believe vibrotactile feedback will be highly useful for surgical task execution, a hypothesis we we will test in future work.

Keywords

vibrotactile feedback robot-assisted surgery 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Guthart, G.S., Salisbury, J.K.: The Intuitive telesurgery system: Overview and application. In: Proc. IEEE Conf. on Robotics and Automation, pp. 618–621 (2000)Google Scholar
  2. 2.
    Horgan, S., Vanuno, D.: Robots in laparoscopic surgery. Journal of Laparoendoscopic and Advanced Surgical Techniques 11(6), 415–419 (2001)CrossRefGoogle Scholar
  3. 3.
    Intuitive Surgical, Inc., http://www.intuitivesurgical.com
  4. 4.
    King, C.H., Culjat, M.O., Franco, M.L., Bisley, J.W., Carman, G.P., Dutson, E.P., Grundfest, W.S.: A multielement tactile feedback system for robot-assisted minimally invasive surgery. IEEE Transactions On Haptics 2(1), 52–56 (2009)CrossRefGoogle Scholar
  5. 5.
    Kitagawa, M., Okamura, A.M., Bethea, B.T., Gott, V.L., Baumgartner, W.A.: Analysis of suture manipulation forces for teleoperation with force feedback. In: Proc. Fifth Int. Conf. of Medical Image Computing and Computer Assisted Intervention (September 2002)Google Scholar
  6. 6.
    Kontarinis, D.A., Howe, R.D.: Tactile display of vibratory information in teleoperation and virtual environments. Presence: Teleoperators and Virtual Environments 4(4), 387–402 (1995)Google Scholar
  7. 7.
    Kumar, R., Hemal, A.K.: Emerging role of robotics in urology. Journal of Minimal Access Surgery 1(4), 202–210 (2005)Google Scholar
  8. 8.
    Lanfranco, A.R., Castellanos, A.E., Desai, J.P., Meyers, W.C.: Robotic surgery: A current perspective. Annals of Surgery 239(1), 14–21 (2004)CrossRefGoogle Scholar
  9. 9.
    Madhani, A.J., Niemeyer, G., Salisbury, J.K.: The Black Falcon: A teleoperated surgical instrument for minimally invasive surgery. In: Proc. IEEE/RSJ Int. Conf. on Intelligent Robotic Systems, vol. 2, pp. 936–944 (1998)Google Scholar
  10. 10.
    Mahvash, M., Gwilliam, J., Agarwal, R., Vagvolgi, B., Su, L., Yuh, D.D., Okamura, A.M.: Force-feedback surgical teleoperator: Controller design and palpation experiments. In: Proc: IEEE Haptics Symposium, pp. 465–471 (March 2008)Google Scholar
  11. 11.
    Mahvash, M., Okamura, A.M.: Friction compensation for enhancing transparency of a teleoperator with compliant transmission. IEEE Transactions on Robotics 23(6), 1240–1246 (2007)CrossRefGoogle Scholar
  12. 12.
    McMahan, W., Kuchenbecker, K.J.: Haptic display of realistic tool contact via dynamically compensated control of a dedicated actuator. In: Proc. IEEE/RSJ Int. Conf. on Intelligent RObots and Systems, pp. 3171–3177 (October 2009)Google Scholar
  13. 13.
    McMahan, W., Romano, J.M., Rahuman, A.M.A., Kuchenbecker, K.J.: High frequency acceleration feedback significantly increases the realism of haptically rendered textured surfaces. In: Proc. IEEE Haptics Symposium, pp. 141–148 (2010)Google Scholar
  14. 14.
    Peirs, J., Clijnen, J., Reynaerts, D., Brussel, H.V., Herijgers, P., Corteville, B., Boone, S.: A micro optical force sensor for force feedback during minimally invasive robotic surgery. Sensors and Actuators A: Physical 115, 447–455 (2004)CrossRefGoogle Scholar
  15. 15.
    Preusche, C., Ortmaier, T., Herzinger, G.: Teleoperation concepts in minimal invasive surgery. Control Engineering Practice 10, 1245–1250 (2002)CrossRefGoogle Scholar
  16. 16.
    Reiley, C.E., Akinbiyi, T., Burschka, D., Chang, D.C., Okamura, A.M., Yuh, D.D.: Effects of visual force feedback on robot-assisted surgical task performance. Journal of Thoracic and Cardiovascular Surgery 135, 196–202 (2008)CrossRefGoogle Scholar
  17. 17.
    Salisbury, J.K.: The heart of microsurgery. Mechanical Engineering Magazine 120(12), 47–51 (1998)Google Scholar
  18. 18.
    Semere, W., Kitagawa, M., Okamura, A.M.: Teleoperation with sensor/actuator asymmetry: Task performance with partial force feedback. In: Proc. 12th Symp. on Haptic Interfaces for Virtual Environments and Teleoperator Systems, pp. 121–127 (March 2004)Google Scholar
  19. 19.
    Zemiti, N., Ortmaier, T., Vitrani, M.A., Morel, G.: A force controlled laparoscopic surgical robot without distal force sensing. In: Ang, M.H., Khatib, O. (eds.) Experimental Robotics IX. STAR, vol. 21, pp. 153–163. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Katherine J. Kuchenbecker
    • 1
  • Jamie Gewirtz
    • 1
  • William McMahan
    • 1
  • Dorsey Standish
    • 1
  • Paul Martin
    • 1
  • Jonathan Bohren
    • 1
  • Pierre J. Mendoza
    • 2
  • David I. Lee
    • 2
  1. 1.Department of Mechanical Engineering and Applied MechanicsUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of Surgery, Division of UrologyUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations