Skeleton and Shape Adjustment and Tracking in Multicamera Environments

  • Marcel Alcoverro
  • Josep Ramon Casas
  • Montse Pardàs
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6169)


In this paper we present a method for automatic body model adjustment and motion tracking in multicamera environments. We introduce a set of shape deformation parameters based on linear blend skinning, that allow a deformation related to the scaling of the distinct bones of the body model skeleton, and a deformation in the radial direction of a bone. The adjustment of a generic body model to a specific subject is achieved by the estimation of those shape deformation parameters. This estimation combines a local optimization method and hierarchical particle filtering, and uses an efficient cost function based on foreground silhouettes using GPU. This estimation takes into account anthropometric constraints by using a rejection sampling method of propagation of particles. We propose a hierarchical particle filtering method for motion tracking using the adjusted model. We show accurate model adjustment and tracking for distinct subjects in a 5 cameras set up.


Motion Capture Body Model Motion Tracking Kinematic Chain Visual Hull 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Poppe, R.: Vision-based human motion analysis: An overview. CVIU 108(1-2), 4–18 (2007)Google Scholar
  2. 2.
    Deutscher, J., Blake, A., Reid, I.: Articulated body motion capture by annealed particle filtering. In: IEEE CVPR ’00, vol. 2, pp. 126–133 (2000)Google Scholar
  3. 3.
    Mikić, I.: Human Body Model Acquisition and Tracking using Multi-Camera Voxel Data. PhD thesis, University of California, San Diego (2002)Google Scholar
  4. 4.
    Ballan, L., Cortelazzo, G.M.: Marker-less motion capture of skinned models in a four camera set-up using optical flow and silhouettes. In: 3DPVT, USA (2008)Google Scholar
  5. 5.
    Vlasic, D., Baran, I., Matusik, W., Popović, J.: Articulated mesh animation from multi-view silhouettes. ACM TOG 27(3), 1–9 (2008)CrossRefGoogle Scholar
  6. 6.
    Baran, I., Popović, J.: Automatic rigging and animation of 3d characters. In: SIGGRAPH ’07, p. 72. ACM, New York (2007)CrossRefGoogle Scholar
  7. 7.
    Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., Davis, J.: SCAPE: shape completion and animation of people. In: SIGGRAPH ’05, vol. 24(3), pp. 408–416 (2005)Google Scholar
  8. 8.
    Corazza, S., Mündermann, L., Gambaretto, E., Ferrigno, G., Andriacchi, T.: Markerless Motion Capture through Visual Hull, Articulated ICP and Subject Specific Model Generation. IJCV 87(1-2), 156–169 (2010)CrossRefGoogle Scholar
  9. 9.
    Bandouch, J., Engstler, F., Beetz, M.: Accurate Human Motion Capture Using an Ergonomics-Based Anthropometric Human Model. In: Perales, F.J., Fisher, R.B. (eds.) AMDO 2008. LNCS, vol. 5098, p. 248. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Carranza, J., Theobalt, C., Magnor, M., Seidel, H.: Free-viewpoint video of human actors. ACM TOG 22(3), 569–577 (2003)CrossRefGoogle Scholar
  11. 11.
    MacCormick, J., Isard, M.: Partitioned Sampling, Articulated Objects, and Interface-Quality Hand Tracking. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 3–19. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. 12.
    Canton-Ferrer, C., Casas, J.R., Pardàs, M.: Exploiting structural hierarchy in articulated objects towards robust motion capture. In: Perales, F.J., Fisher, R.B. (eds.) AMDO 2008. LNCS, vol. 5098, pp. 82–91. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Bregler, C., Malik, J., Pullen, K.: Twist based acquisition and tracking of animal and human kinematics. IJCV 56(3), 179–194 (2004)CrossRefGoogle Scholar
  14. 14.
    Lewis, J., Cordner, M., Fong, N.: Pose space deformation: a unified approach to shape interpolation and skeleton-driven deformation. In: SIGGRAPH ’00, pp. 165–172. ACM, New York (2000)CrossRefGoogle Scholar
  15. 15.
    Piccardi, M.: Background subtraction techniques: a review. In: 2004 IEEE Conference on Systems, Man and Cybernetics, Vol. 4 (2004)Google Scholar
  16. 16.
    Xu, L., Landabaso, J., Pardas, M.: Shadow removal with blob-based morphological reconstruction for error correction. In: IEEE ICASSP ’05, Vol. 2 (2005)Google Scholar
  17. 17.
    Press, W., Flannery, B., Teukolsky, S., Vetterling, W.: Numerical recipes in C: the art of scientific computing (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Marcel Alcoverro
    • 1
  • Josep Ramon Casas
    • 1
  • Montse Pardàs
    • 1
  1. 1.Technical University of CataloniaBarcelonaSpain

Personalised recommendations