A Proposal for Local and Global Human Activities Identification

  • Antonio Fernández-Caballero
  • José Carlos Castillo
  • José María Rodríguez-Sánchez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6169)


There are a number of solutions to automate the monotonous task of looking at a monitor to find suspicious behaviors in video surveillance scenarios. Detecting strange objects and intruders, or tracking people and objects, is essential for surveillance and safety in crowded environments. The present work deals with the idea of jointly modeling simple and complex behaviors to report local and global human activities in natural scenes. In order to validate our proposal we have performed some tests with some CAVIAR test cases. In this paper we show some relevant results for some study cases related to visual surveillance, namely “speed detection”, “position and direction analysis”, and “possible cashpoint holdup detection”.


Human activities simple behaviors complex behaviors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amer, A., Dubois, E., Mitiche, A.: Rule-based real-time detection of context-independent events in video shots. Real-Time Imaging 11(33), 244–256 (2005)CrossRefGoogle Scholar
  2. 2.
    Andrade, E.L., Blunsden, S., Fisher, R.B.: Modelling crowd scenes for event detection. In: 18th International Conference on Pattern Recognition, vol. 1, pp. 175–178 (2006)Google Scholar
  3. 3.
    Blunsden, S., Fisher, R.B.: Pre-fight detection - Classification of fighting situations using hierarchical AdaBoost. In: Fourth International Conference on Computer Vision Theory and Applications, vol. 2, pp. 303–308 (2009)Google Scholar
  4. 4.
    Bobick, A.F., Davis, J.W.: The recognition of human movement using temporal templates. IEEE PAMI 23(3), 257–267 (2001)CrossRefGoogle Scholar
  5. 5.
    Buxton, H., Gong, S.: Visual surveillance in a dynamic and uncertain world. Artificial Intelligence 78(1), 431–459 (1995)CrossRefGoogle Scholar
  6. 6.
    Fernández-Caballero, A., López, M.T., Saiz-Valverde, S.: Dynamic Stereoscopic Selective Visual Attention (DSSVA): Integrating motion and shape with depth in video segmentation. ESWA 34(2), 1394–1402 (2008)Google Scholar
  7. 7.
    Fernández-Caballero, A., Gómez, F.J., López-López, J.: Road-traffic monitoring by knowledge-driven static and dynamic image analysis. ESWA 35(3), 701–719 (2008)Google Scholar
  8. 8.
    Galata, A., Johnson, N., Hogg, D.: Learning variable-length Markov models of behavior. CVIU 81(3), 398–413 (2001)zbMATHGoogle Scholar
  9. 9.
    Gascueña, J.M., Fernández-Caballero, A.: On the use of agent technology in intelligent, multi-sensory and distributed surveillance. In: KER (2009) (in press)Google Scholar
  10. 10.
    Gavrila, D.M.: The visual analysis of human movement: a survey. CVIU 73(1), 82–98 (1999)zbMATHGoogle Scholar
  11. 11.
    Hongeng, S., Nevatia, R., Bremond, F.: Video-based event recognition: activity representation and probabilistic recognition methods. CVIU 96(2), 129–162 (2004)Google Scholar
  12. 12.
    Huang, K., Wang, S., Tan, T., Maybank, S.: Human behavior analysis based on a new motion descriptor. IEEE CirSysVideo 19(12), 1830–1840 (2009)Google Scholar
  13. 13.
    Ivanov, Y.A., Bobick, A.F.: Recognition of visual activities and interactions by stochastic parsing. IEEE PAMI 22(8), 852–872 (2000)CrossRefGoogle Scholar
  14. 14.
    Laptev, I., Pérez, P.: Retrieving actions in movies. In: International Conference on Computer Vision, pp. 1–8 (2007)Google Scholar
  15. 15.
    Lavee, G., Rivlin, E., Rudzsky, M.: Understanding video events: a survey of methods for automatic interpretation of semantic occurrences in video. IEEE SMC-C 39(5), 489–504 (2009)Google Scholar
  16. 16.
    Loccoz, N.M., Bremond, F., Thonnat, M.: Recurrent Bayesian network for the recognition of human behaviors from video. In: 3rd International Conference on Computer Vision Systems, pp. 68–77 (2003)Google Scholar
  17. 17.
    López, M.T., Fernández-Caballero, A., Fernández, M.A., Mira, J., Delgado, A.E.: Dynamic visual attention model in image sequences. IMAVIS 25(5), 597–613 (2007)Google Scholar
  18. 18.
    López, M.T., Fernández-Caballero, A., Fernández, M.A., Mira, J., Delgado, A.E.: Motion features to enhance scene segmentation in active visual attention. Pattern Recognition Letters 27(5), 469–478 (2006)CrossRefGoogle Scholar
  19. 19.
    López, M.T., Fernández-Caballero, A., Mira, J., Delgado, A.E., Fernández, M.A.: Algorithmic lateral inhibition method in dynamic and selective visual attention task: Application to moving objects detection and labelling. ESWA 31(3), 570–594 (2006)Google Scholar
  20. 20.
    López-Valles, J.M., Fernández, M.A., Fernández-Caballero, A.: Stereovision depth analysis by two-dimensional motion charge memories. Pattern Recognition Letters 28(1), 20–30 (2007)CrossRefGoogle Scholar
  21. 21.
    Moreno-Garcia, J., Rodriguez-Benitez, L., Fernández-Caballero, A., López, M.T.: Video sequence motion tracking by fuzzification techniques. ASOC 10(1), 318–331 (2010)Google Scholar
  22. 22.
    Natarajan, P., Nevatia, R.: View and scale invariant action recognition using multiview shape-flow models. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)Google Scholar
  23. 23.
    Neumann, B., Möller, R.: On scene interpretation with description logics. IMAVIS 26(1), 82–101 (2008)Google Scholar
  24. 24.
    Oliver, N.M., Horvitz, E.: A comparison of HMMs and dynamic Bayesian networks for recognizing office activities. User Modeling, 199-209 (2005)Google Scholar
  25. 25.
    Oliver, N.M., Rosario, B., Pentland, A.P.: A Bayesian computer system for modeling human interactions. IEEE PAMI 22(8), 831–843 (2000)CrossRefGoogle Scholar
  26. 26.
    Shechtman, E., Irani, M.: Matching local self-similarities across images and videos. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007)Google Scholar
  27. 27.
    Tran, S.D., Davis, L.S.: Event modeling and recognition using Markov logic networks. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 610–623. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  28. 28.
    Ulusoy, I., Bishop, C.M.: Generative versus discriminative methods for object recognition. In: The 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 258–265 (2005)Google Scholar
  29. 29.
    Wang, X., Ma, X., Grimson, W.E.L.: Unsupervised activity perception in crowded and complicated scenes using hierarchical Bayesian models. IEEE PAMI 31(3), 539–555 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Antonio Fernández-Caballero
    • 1
  • José Carlos Castillo
    • 1
  • José María Rodríguez-Sánchez
    • 1
  1. 1.Departamento de Sistemas Informáticos & Instituto de Investigación en InformáticaUniversidad de Castilla-La ManchaAlbaceteSpain

Personalised recommendations