Advertisement

Silhouette Area Based Similarity Measure for Template Matching in Constant Time

  • Daniel Mohr
  • Gabriel Zachmann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6169)

Abstract

In this paper, we present a novel, fast, resolution-independent silhouette area-based matching approach. We approximate the silhouette area by a small set of axis-aligned rectangles. This yields a very memory efficient representation of templates. In addition, utilizing the integral image, we can thus compare a silhouette with an input image at an arbitrary position in constant time.

Furthermore, we present a new method to build a template hierarchy optimized for our rectangular representation of template silhouettes. With the template hierarchy, the complexity of our matching method for n templates is O(logn). For example, we can match a hierarchy consisting of 1000 templates in 1.5 ms. Overall, our contribution constitutes an important piece in the initialization stage of any tracker of (articulated) objects.

Keywords

Pose estimation tracking template matching rectangle packing problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stenger, B., Thayananthan, A., Torr, P.H.S., Cipolla, R.: Model-based hand tracking using a hierarchical bayesian filter. IEEE Transactions on Pattern Analysis and Machine Intelligence (2006)Google Scholar
  2. 2.
    Crow, F.C.: Summed-area tables for texture mapping. In: SIGGRAPH: Proceedings of the 11th Annual Conference on Computer Graphics and Interactive Techniques (1984)Google Scholar
  3. 3.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: IEEE Conference on Computer Vision and Pattern Recognition (2001)Google Scholar
  4. 4.
    Lin, J.Y., Wu, Y., Huang, T.S.: 3d model-based hand tracking using stochastic direct search method. In: International Conference on Automatic Face and Gesture Recognition (2004)Google Scholar
  5. 5.
    Wu, Y., Lin, J.Y., Huang, T.S.: Capturing natural hand articulation. In: International Conference on Computer Vision (2001)Google Scholar
  6. 6.
    Kato, M., Chen, Y.W., Xu, G.: Articulated hand tracking by pca-ica approach. In: International Conference on Automatic Face and Gesture Recognition (2006)Google Scholar
  7. 7.
    Ouhaddi, H., Horain, P.: 3d hand gesture tracking by model registration. In: Workshop on Synthetic-Natural Hybrid Coding and Three Dimensional Imaging (1999)Google Scholar
  8. 8.
    Nirei, K., Saito, H., Mochimaru, M., Ozawa, S.: Human hand tracking from binocular image sequences. In: 22th International Conference on Industrial Electronics, Control, and Instrumentation (1996)Google Scholar
  9. 9.
    Amai, A., Shimada, N., Shirai, Y.: 3-d hand posture recognition by training contour variation. In: IEEE Conference on Automatic Face and Gesture Recognition (2004)Google Scholar
  10. 10.
    Shimada, N., Kimura, K., Shirai, Y.: Real-time 3-d hand posture estimation based on 2-d appearance retrieval using monocular camera. In: IEEE International Conference on Computer Vision (2001)Google Scholar
  11. 11.
    Zhou, H., Huang, T.: Okapi-chamfer matching for articulated object recognition. In: IEEE International Conference on Computer Vision (2005)Google Scholar
  12. 12.
    Lowe, D.G.: Object recognition from local scale-invariant features. In: IEEE International Conference on Computer Vision (1999)Google Scholar
  13. 13.
    Zhou, H., Huang, T.: Tracking articulated hand motion with eigen dynamics analysis. In: IEEE International Conference on Computer Vision (2003)Google Scholar
  14. 14.
    Stenger, B.D.R.: Model-based hand tracking using a hierarchical bayesian filter. In: Dissertation submitted to the University of Cambridge (2004)Google Scholar
  15. 15.
    Sudderth, E.B., Mandel, M.I., Freeman, W.T., Willsky, A.S.: Visual hand tracking using nonparametric belief propagation. In: IEEE CVPR Workshop on Generative Model Based Vision (2004)Google Scholar
  16. 16.
    Kumar, V.A., Ramesh, H.: Covering rectilinear polygons with axis-parallel rectangles. In: Annual ACM Symposium on Theory of Computing (1999)Google Scholar
  17. 17.
    Wu, S., Sahni, S.: Covering rectilinear polygons by rectangles. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (1990)Google Scholar
  18. 18.
    Heinrich-Litan, L., Lübecke, M.E.: Rectangle covers revisited computationally. ACM Journal of Experimental Algorithmics 11 (2006)Google Scholar
  19. 19.
    Liou, W., Tan, J.J.M., Lee, R.C.T.: Minimum rectangular partition problem for simple rectilinear polygons. IEEE Transactions on Computer-Aided Design (1990)Google Scholar
  20. 20.
    O’Rourke, J., Tewari, G.: Partitioning orthogonal polygons into fat rectangles in polynomial time. In: Proc. 13th Canadian Conference on Computational Geometry (2001)Google Scholar
  21. 21.
    Cottrell, M., Hammer, B., Hasenfuß, A., Villmann, T.: Batch neural gas. In: 5th Workshop on Self-Organizing Maps (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Daniel Mohr
    • 1
  • Gabriel Zachmann
    • 1
  1. 1.Clausthal UniversityGermany

Personalised recommendations