Finding Optimal Parameter Configuration for a Dynamic Triangle Mesh Compressor

  • Oldřich Petřík
  • Libor Váša
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6169)

Abstract

This paper proposes a method of rate-distortion optimisation of an algorithm for compressing dynamic 3D triangle meshes. Although many articles regarding compression methods for this kind of data have been published in the last decade, the problem of rate-distortion optimisation has only been addressed by a very few of them. An exhaustive search method, where a grid of parameter configurations is used in the compressor and only the configurations producing good results are selected, is still widely used even though it requires a number of tries exponential to the number of parameters. Our proposed method can find better solutions (i.e. closer to an optimum) in expected linear to quadratic time.

Keywords

Rate-Distortion Optimisation Dynamic Mesh Compression Principle of Equal Slopes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lengyel, J.E.: Compression of time-dependent geometry. In: Proceedings of the 1999 symposium on Interactive 3D graphics, SI3D ’99, pp. 89–95. ACM Press, New York (1999)CrossRefGoogle Scholar
  2. 2.
    Alexa, M., Müller, W.: Representing animations by principal components. Computer Graphics Forum 19(3), 411–426 (2000)CrossRefGoogle Scholar
  3. 3.
    Mamou, K., Zaharia, T., Preteux, F., Stefanoski, N., Ostermann, J.: Frame-based compression of animated meshes in MPEG-4. In: IEEE International Conference on Multimedia and Expo., ICME 2008, pp. 1121–1124 (June 2008)Google Scholar
  4. 4.
    International Organization for Standardization: ISO/IEC 14496 Part 16: Animation Framework eXtension (AFX), amendment 2: Frame-based Animated Mesh Compression (FAMC). International Organization for Standardization (2009)Google Scholar
  5. 5.
    Váša, L., Skala, V.: Coddyac: Connectivity driven dynamic mesh compression. In: 3DTV-CON, The True Vision - Capture, Transmission and Display of 3D Video, Kos, Greece. IEEE Computer Society Press, Los Alamitos (May 2007)Google Scholar
  6. 6.
    Rossignac, J.: EdgeBreaker: Connectivity compression for triangle meshes. IEEE Transactions on Visualization and Computer Graphics 5, 47–61 (1998)CrossRefGoogle Scholar
  7. 7.
    Payan, F., Antonini, M.: An efficient bit allocation for compressing normal meshes with an error-driven quantization. Computer Aided Geometric Design 22(5), 466–486 (2005)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Kammoun, A., Payan, F., Antonini, M.: Bit allocation for spatio-temporal wavelet coding of animated semi-regular meshes. In: Huet, B., Smeaton, A., Mayer-Patel, K., Avrithis, Y. (eds.) MMM 2009. LNCS, vol. 5371, pp. 128–139. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Mamou, K., Zaharia, T., Preteux, F., Kamoun, A., Payan, F., Antonini, M.: Two optimizations of the MPEG-4 FAMC standard for enhanced compression of animated 3D meshes. In: 15th IEEE International Conference on Image Processing, ICIP 2008, pp. 1764–1767 (October 2008)Google Scholar
  10. 10.
    Müller, K., Smolic, A., Kautzner, M., Eisert, P., Wiegand, T.: Rate-distortion-optimized predictive compression of dynamic 3d mesh sequences. Signal Processing: Image Communication, Special Issue on Interactive representation of still and dynamic scenes 21(9), 812–828 (2006)Google Scholar
  11. 11.
    Müller, K., Smolic, A., Kautzner, M., Eisert, P., Wieg, T.: Predictive compression of dynamic 3d meshes. In: Proc. ICIP 2005, IEEE International Conference on Image Processing (2005)Google Scholar
  12. 12.
    Váša, L., Skala, V.: Cobra: Compression of the basis for the PCA represented animations. Computer Graphics Forum 28(6), 1529–1540 (2009)CrossRefGoogle Scholar
  13. 13.
    Touma, C., Gotsman, C.: Triangle mesh compression. In: Graphics Interface, pp. 26–34 (June 1998)Google Scholar
  14. 14.
    Karni, Z., Gotsman, C.: Compression of soft-body animation sequences. Computers and Graphics 28, 25–34 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Oldřich Petřík
    • 1
  • Libor Váša
    • 1
  1. 1.University of West BohemiaPlzeňCzech Republic

Personalised recommendations