A Reusable Model for Emotional Biped Walk-Cycle Animation with Implicit Retargeting

  • Marco Romeo
  • Marcelo Dematei
  • Julian Bonequi
  • Alun Evans
  • Josep Blat
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6169)


This paper presents a reusable model for rapid animation of the walk-cycle of virtual biped characters, with implicit retargeting of motion capture to any character, regardless of dimensions. Despite modern software continuously improving the quality of automatic assistance, the process of animating a biped character still requires substantial manual intervention. Our research contributes to this field by creating a theoretical model for emotional character walking, defining a series of proportional variables which can be changed to create different emotional walk cycles. We used motion capture data to assign real-world values to these variables, which are then used to procedurally create ‘emotional’ walk cycles. Due to the fact that we avoid fixed values and work solely with proportions, the system implicitly retargets the data to any biped body shape, regardless of the size and structure of the skeleton.


Animation retargeting virtual characters 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Badler, N., Phillips, C., Lynn, B.: Simulating Humans: Computer Graphics and control. Oxford University Press, Oxford (1993)zbMATHGoogle Scholar
  2. 2.
    Hodgins, J., Wooten, W., Brogan, D., O’Brian, J.: Animating human Athletics. Computer Graphics 29, 71–78 (1995)Google Scholar
  3. 3.
    Perlin, K., Goldberg, G.: Improv: A system for scripting interactive actors in virtual worlds. Computer Graphics 30, 205–218 (1996)Google Scholar
  4. 4.
    Witkin, A., Popovic, Z.: Motion Warping. Computer Graphics 29, 105–108 (1995)Google Scholar
  5. 5.
    Unama, M., Takeuchi: Fourier Principals for Emotion-based Human Figure Animation. In: International Conference on Computer Graphics and Interactive Techniques, pp. 91–96. ACM Press, New York (1995)Google Scholar
  6. 6.
    Bruderlin, A., Williams, L.: Motion Signal Processing. Computer Graphics 29, 97–104 (1995)Google Scholar
  7. 7.
    Grünvogel, S., Lange, T., Piesk, J.: Dynamic Motion Models. In: Eurographics (2002)Google Scholar
  8. 8.
    Abadia, J., Evans, A., Ganzales, E., Gonzales, S., Soto, D., Fort, S., Romeo, M., Blat, J.: Assisted Animated Production Creation and Programme Generation. In: ACM Advances in Computer Entertainment Technology, pp. 207–214. ACM Press, New York (2009)Google Scholar
  9. 9.
    Meredith, M., Maddock, S.: Adapting Motion Capture Data Using Weighted Real-Time Inverse Kinematics. ACM Computer in Entertainment 3(1) (2005)Google Scholar
  10. 10.
    Ekman, P., Friesen, W., Ellsworth, P.: What emotion categories or dimensions can observers judge from facial behaviour? In: Ekman, P. (ed.) Emotion in the Human Face (1982)Google Scholar
  11. 11.
    Densley, D., Willis, P.: Emotional Posturing: A Method Towards Achieving Emotional Figure Animation. In: IEEE Computer Animation 1997, pp. 8–14. IEEE Computer Society, Washington (1997)Google Scholar
  12. 12.
    Williams, R.: The Animator’s Survival Toolkit. Faber and Faber, London (2001)Google Scholar
  13. 13.
    Johnston, O., Thomas, F.: The Illusion of Life: Disney Animation. Disney Editions (1995)Google Scholar
  14. 14.
    OGRE – Open Source 3D Graphics Engine,

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Marco Romeo
    • 1
  • Marcelo Dematei
    • 1
  • Julian Bonequi
    • 1
  • Alun Evans
    • 1
  • Josep Blat
    • 1
  1. 1.Grup de Tecnologies InteractivesUniversitat Pompeu FabraBarcelonaSpain

Personalised recommendations