Learning of Fuzzy Rule-Based Meta-schedulers for Grid Computing with Differential Evolution

  • R. P. Prado
  • S. García-Galán
  • J. E. Muñoz Expósito
  • A. J. Yuste
  • S. Bruque
Part of the Communications in Computer and Information Science book series (CCIS, volume 80)


Grid computing has arisen as the next-generation infrastructure for high demand computational applications founded on the collaboration and coordination of a large set of distributed resources. The need to satisfy both users and network administrators QoS demands in such highly changing environments requires the consideration of adaptive scheduling strategies dealing with inherent dynamism and uncertainty. In this paper, a meta-scheduler based on Fuzzy Rule-Based Systems is proposed for scheduling in grid computing. Moreover, a new learning strategy inspired by stochastic optimization algorithm Differential Evolution (DE), is incorporated for the evolution of expert system knowledge or rules bases. Simulation results show that knowledge acquisition process is improved in terms of convergence behaviour and final result in comparison to other evolutionary strategy, genetic Pittsburgh approach. Also, the fuzzy meta-scheduler performance is compared to other extended scheduling strategy, EASY-Backfilling in diverse criteria such as flowtime, tardiness and machine usage.


Evolutionary Algorithms Knowledge Acquisition Fuzzy Rule-Based Systems Grid Computing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Foster, I., Kesselman, C.: The Grid 2: Blueprint for a New Computing Infrastructure. Morgan Kaufmann Publishers Inc., San Francisco (2003)Google Scholar
  2. 2.
    Klusacek, D.: Dealing with Uncertainties in Grids through the Event-based Scheduling Approach. In: Fourth Doctoral Workshop on Mathematical and Engineering Methods in Computer Science (MEMICS 2008), vol. 1, pp. 978–980 (2008)Google Scholar
  3. 3.
    Xhafa, F., Abraham, A.: Meta-heuristics for grid scheduling problems. In: Metaheuristics for Scheduling: Distributed Computing Environments. Studies in Computational Intelligence. Springer, Germany (2008), ISBN: 978–3-540-79437-0CrossRefGoogle Scholar
  4. 4.
    Cordón, O., Herrera, F., Hoffmann, F., Magdalena, L.: Genetic fuzzy systems: Evolutionary tuning and learning of fuzzy knowledge bases. World Scientific Pub. Co. Inc., Singapore (2001)CrossRefzbMATHGoogle Scholar
  5. 5.
    Jamaludin, J., Rahim, N., Hew, W.: Development of a self-tuning fuzzy logic controller for intelligent control of elevator systems. Engineering Applications of Artificial Intelligence 22(8), 1167–1178 (2009)CrossRefGoogle Scholar
  6. 6.
    Muñoz-Expósito, J.E., García-Galán, S., Ruiz-Reyes, N., Vera-Candeas, P.: Adaptive network-based fuzzy inference system vs. other classification algorithms for warped lpc-based speech/music discrimination. Eng. Appl. Artif. Intell. 20(6), 783–793 (2007)CrossRefGoogle Scholar
  7. 7.
    Franke, C., Hoffmann, F., Lepping, J., Schwiegelshohn, U.: Development of scheduling strategies with genetic fuzzy systems. Appl. Soft Comput. 8(1), 706–721 (2008)CrossRefGoogle Scholar
  8. 8.
    Prado, R.P., Galán, S.G., Yuste, A.J., Expósito, J.E.M., Santiago, A.J.S., Bruque, S.: Evolutionary fuzzy scheduler for grid computing. In: Cabestany, J., Sandoval, F., Prieto, A., Corchado, J.M. (eds.) IWANN 2009. LNCS, vol. 5517, pp. 286–293. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Ishibuchi, H., Yamamoto, T., Nakashima, T.: Hybridization of fuzzy gbml approaches for pattern classification problems. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 35(2), 359–365 (2005)CrossRefGoogle Scholar
  10. 10.
    Storn, R., Price, K.: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. J. of Global Optimization 11(4), 341–359 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Wang, W.-H., Wang, F.-R., Pan, Q.-K., Zuo, F.-C.: Improved differential evolution algorithm for location management in mobile computing. In: International Workshop on Intelligent Systems and Applications, ISA 2009, pp. 1–5 (2009)Google Scholar
  12. 12.
    Yüzgeç, U.: Performance comparison of differential evolution techniques on optimization of feeding profile for an industrial scale baker’s yeast fermentation process. ISA Transactions 49(1), 167–176 (2010)CrossRefGoogle Scholar
  13. 13.
    Zhang, X., Chen, W., Dai, C., Cai, W.: Dynamic multi-group self-adaptive differential evolution algorithm for reactive power optimization. International Journal of Electrical Power and Energy Systems (2009) (in Press, Corrected Proof)Google Scholar
  14. 14.
    Klusacek, D., Rudova, H., Baraglia, R., Pasquali, M., Capannini, G.: Comparison of multi-criteria scheduling techniques. In: Grid Computing: Achievements and prospects, pp. 173–184. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Thain, D., Tannenbaum, T., Livny, M.: Distributed computing in practice: The Condor experience. Concurrency and Computation Practice and Experience 17(2-4), 323–356 (2005)CrossRefGoogle Scholar
  16. 16.
    Venugopal, S., Buyya, R., Winton, L.: A grid service broker for scheduling distributed data-oriented applications on global grids. In: Proceedings of the 2nd workshop on Middleware for grid computing, pp. 75–80. ACM, New York (2004)CrossRefGoogle Scholar
  17. 17.
    Klusacek, D., Rudova, H.: Improving QoS in computational Grids through schedule-based approach. In: Scheduling and Planning Applications Workshop at the Eighteenth International Conference on Automated Planning and Scheduling (ICAPS 2008), Sydney, Australia (2008)Google Scholar
  18. 18.
    Klusacek, D., Matyska, L., Rudova, H.: Alea - Grid scheduling simulation environment. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2007. LNCS, vol. 4967, pp. 1029–1038. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    C. N. G. Infrastructure, Metacentrum data sets,

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • R. P. Prado
    • 1
  • S. García-Galán
    • 1
  • J. E. Muñoz Expósito
    • 1
  • A. J. Yuste
    • 1
  • S. Bruque
    • 1
  1. 1.Telecommunication Engineering Department in University of JaénLinares, JaénSpain

Personalised recommendations