Advertisement

Abstract

An interpretation of intuitionistic fuzzy sets is proposed based on random set theory and prototype theory. The extension of fuzzy labels are modelled by lower and upper random set neighbourhoods, identifying those element of the universe within an uncertain distance threshold of a set of prototypical elements. These neighbourhoods are then generalised to compound fuzzy descriptions generated as logical combinations of basic fuzzy labels. The single point coverage functions of these lower and upper random sets are then shown to generate lower and upper membership functions satisfying the min-max combination rules of interval fuzzy set theory, the latter being isomophic to intuitionistic fuzzy set theory.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atanassov, K.: Intuitionistic Fuzzy Sets. Fuzzy Sets and Systems 20, 87–96 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Atanassov, K., Gargov, G.: Interval Valued Intuitionistic Fuzzy Sets. Fuzzy Sets and Systems 31(3), 343–349 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Atanassov, K.: On Intuitionistic Fuzzy Negations and De Morgan Laws. In: Proceedings of the Eleventh International Conference IPMU 2006, Paris (2006)Google Scholar
  4. 4.
    Dubois, D., Prade, H.: An Introduction to Bipolar Representations of Information and Preference. International Journal of Intelligent Systems 23, 866–877 (2008)CrossRefzbMATHGoogle Scholar
  5. 5.
    Dubois, D., Gottwald, S., Hajek, P., Kacprzyk, J., Prade, H.: Terminological Difficulties in Fuzzy Set Theory - The Case of ‘Intuitionistic Fuzzy Sets. Fuzzy Sets and Systems 156, 485–491 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Dubois, D., Prade, H.: The three semantics of fuzzy sets. Fuzzy Sets and Systems 90, 141–150 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Grattan-Guiness, I.: Fuzzy Membership Mapped onto Interval and Many-Valued Quantities. Z. Math. Logik Grundladen Math. 22, 149–160 (1975)CrossRefGoogle Scholar
  8. 8.
    Goodman, I.R.: Fuzzy Sets as Equivalence Classes of Random Sets. In: Yager, R. (ed.) Fuzzy Set and Possibility Theory, pp. 327–342 (1982)Google Scholar
  9. 9.
    Goodman, I.R., Nguyen, H.T.: Uncertainty Models for Knowledge Based Systems. North Holland, Amsterdam (1985)zbMATHGoogle Scholar
  10. 10.
    Hampton, J.A.: Concepts as Prototypes. In: Ross, B.H. (ed.) The Psychology of Learning and Motivation: Advances in Research and Theory, vol. 46, pp. 79–113 (2006)Google Scholar
  11. 11.
    Jahn, K.U.: Intervall-wertige Mengen. Math. Nach. 68, 115–132 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Lawry, J., Tang, Y.: Uncertainty modelling for vague concepts: A prototype theory approach. Artificial Intelligence 173, 1539–1558 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Lawry, J.: Appropriateness measures: an uncertainty model for vague concepts. Synthese 161, 255–269 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Nguyen, H.: On modeling of linguistic information using random sets. Information Sciences 34, 265–274 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Parikh, R.: Vague Predicates and Language Games. Theoria (Spain) XI(27), 97–107 (1996)zbMATHGoogle Scholar
  16. 16.
    Rosch, E.H.: Natural Categories. Cognitive Psychology 4, 328–350 (1973)CrossRefGoogle Scholar
  17. 17.
    Rosch, E.H.: Cognitive Representation of Semantic Categories. Journal of Experimental Psychology: General 104, 192–233 (1975)CrossRefGoogle Scholar
  18. 18.
    Ruspini, E.H.: On the Semantics of Fuzzy Logic. International Journal of Approximate Reasoning 5, 45–88 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Sambuc, R.: Fonctions-floues. Application a l’aide au diagnostic en pathologie thyroidienne, PhD Thesis, Univ. Marseille, France (1975)Google Scholar
  20. 20.
    Williamson, T.: Vagueness, Routledge (1994)Google Scholar
  21. 21.
    Zadeh, L.A.: The Concept of a Linguistic Variable and its Application to Approximate Reasoning:I. Information Sciences 8, 199–249 (1975)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of Engineering MathematicsUniversity of BristolBristolUK

Personalised recommendations