Advertisement

Automated Machine-Checked Hybrid System Safety Proofs

  • Herman Geuvers
  • Adam Koprowski
  • Dan Synek
  • Eelis van der Weegen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6172)

Abstract

We have developed a hybrid system safety prover, implemented in Coq using the abstraction method introduced by [2]. The development includes: a formalisation of the structure of hybrid systems; a framework for the construction of an abstract system (consisting of decidable “over-estimators” of abstract transitions and initiality) faithfully representing a concrete hybrid system; a translation of abstract systems to graphs, enabling the decision of abstract state reachability using a certified graph reachability algorithm; a proof of the safety of an example hybrid system generated using this tool stack. To produce fully certified safety proofs without relying on floating point computations, the development critically relies on the computable real number implementation of the CoRN library of constructive mathematics formalised in Coq. The development also features a nice interplay between constructive and classical logic via the double negation monad.

Keywords

Hybrid System Double Negation Abstract System Hybrid Automaton Concrete State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ábrahám-Mumm, E., Hannemann, U., Steffen, M.: Assertion-based analysis of hybrid systems with PVS. In: Moreno-Díaz Jr., R., Buchberger, B., Freire, J.-L. (eds.) EUROCAST 2001. LNCS, vol. 2178, pp. 94–109. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Alur, R., Dang, T., Ivančić, F.: Predicate abstraction for reachability analysis of hybrid systems. ACM Trans. Embedded Comput. Syst. 5, 152–199 (2006)CrossRefGoogle Scholar
  3. 3.
    Bagnara, R., Hill, P., Zaffanella, E.: The parma polyhedra library: Toward a complete set of numerical abstractions for the analysis and verification of hardware and software systems. Sci. Comput. Program. 72(1-2), 3–21 (2008)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Bjørner, N., Manna, Z., Sipma, H., Uribe, T.: Deductive verification of real-time systems using STeP. Theor. Comput. Sci. 253(1), 27–60 (2001)CrossRefGoogle Scholar
  5. 5.
    Chutinan, A., Krogh, B.: Verification of polyhedral-invariant hybrid automata using polygonal flow pipe approximations. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC 1999. LNCS, vol. 1569, pp. 76–90. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  6. 6.
    Clarke, E., Fehnker, A., Han, Z., Krogh, B., Ouaknine, J., Stursberg, O., Theobald, M.: Abstraction and counterexample-guided refinement in model checking of hybrid systems. Int. J. Found. Comput. Sci. 14(4), 583–604 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Cruz-Filipe, L., Geuvers, H., Wiedijk, F.: C-CoRN, the constructive Coq repository at Nijmegen. In: Asperti, A., Bancerek, G., Trybulec, A. (eds.) MKM 2004. LNCS, vol. 3119, pp. 88–103. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Frehse, G.: PHAVer: Algorithmic verification of hybrid systems past HyTech. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 258–273. Springer, Heidelberg (2005)Google Scholar
  9. 9.
    Henzinger, T.: The theory of hybrid automata. pp. 278–292 (1996)Google Scholar
  10. 10.
    Henzinger, T., Rusu, V.: Reachability verification for hybrid automata. In: Henzinger, T.A., Sastry, S.S. (eds.) HSCC 1998. LNCS, vol. 1386, pp. 190–204. Springer, Heidelberg (1998)Google Scholar
  11. 11.
    Lynch, N., Segala, R., Vaandrager, F.: Hybrid I/O automata. Inf. Comput. 185(1), 105–157 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Manna, Z., Sipma, H.: Deductive verification of hybrid systems using STeP. In: Henzinger, T.A., Sastry, S.S. (eds.) HSCC 1998. LNCS, vol. 1386, pp. 305–318. Springer, Heidelberg (1998)Google Scholar
  13. 13.
  14. 14.
    O’Connor, R.: Certified exact transcendental real number computation in Coq. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 246–261. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Pappas, G.: Hybrid system tools, http://wiki.grasp.upenn.edu/hst/
  16. 16.
    Platzer, A., Quesel, J.-D.: Keymaera: A hybrid theorem prover for hybrid systems. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 171–178. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Preußig, J., Kowalewski, S., Wong-Toi, H., Henzinger, T.: An algorithm for the approximative analysis of rectangular automata. In: Ravn, A.P., Rischel, H. (eds.) FTRTFT 1998. LNCS, vol. 1486, pp. 228–240. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  18. 18.
    Ratschan, S.: Efficient solving of quantified inequality constraints over the real numbers. ACM Transactions on Computational Logic 7(4), 723–748 (2006)MathSciNetGoogle Scholar
  19. 19.
    Ratschan, S., She, Z.: Safety verification of hybrid systems by constraint propagation based abstraction refinement. ACM Transactions in Embedded Computing Systems 6(1) (2007)Google Scholar
  20. 20.
    Stursberg, O., Kowalewski, S., Hoffmann, I., Preußig, J.: Comparing timed and hybrid automata as approximations of continuous systems. In: Antsaklis, P.J., Kohn, W., Nerode, A., Sastry, S.S. (eds.) HS 1996. LNCS, vol. 1273, pp. 361–377. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  21. 21.
    Wadler, P.: Monads for functional programming. In: Jeuring, J., Meijer, E. (eds.) AFP 1995. LNCS, vol. 925, pp. 24–52. Springer, Heidelberg (1995)Google Scholar
  22. 22.
    van der Weegen, E.: Automated machine-checked hybrid system safety proofs, an implementation of the abstraction method in Coq. Technical report, Radboud University Nijmegen (2009), http://www.eelis.net/research/hybrid/

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Herman Geuvers
    • 1
    • 2
  • Adam Koprowski
    • 3
  • Dan Synek
    • 1
  • Eelis van der Weegen
    • 1
  1. 1.Radboud UniversityNijmegen
  2. 2.Technical UniversityEindhoven
  3. 3.MLStateParis

Personalised recommendations