Formal Proof of a Wave Equation Resolution Scheme: The Method Error

  • Sylvie Boldo
  • François Clément
  • Jean-Christophe Filliâtre
  • Micaela Mayero
  • Guillaume Melquiond
  • Pierre Weis
Conference paper

DOI: 10.1007/978-3-642-14052-5_12

Part of the Lecture Notes in Computer Science book series (LNCS, volume 6172)
Cite this paper as:
Boldo S., Clément F., Filliâtre JC., Mayero M., Melquiond G., Weis P. (2010) Formal Proof of a Wave Equation Resolution Scheme: The Method Error. In: Kaufmann M., Paulson L.C. (eds) Interactive Theorem Proving. ITP 2010. Lecture Notes in Computer Science, vol 6172. Springer, Berlin, Heidelberg

Abstract

Popular finite difference numerical schemes for the resolution of the one-dimensional acoustic wave equation are well-known to be convergent. We present a comprehensive formalization of the simplest scheme and formally prove its convergence in Coq. The main difficulties lie in the proper definition of asymptotic behaviors and the implicit way they are handled in the mathematical pen-and-paper proofs. To our knowledge, this is the first time this kind of mathematical proof is machine-checked.

Keywords

partial differential equation acoustic wave equation numerical scheme Coq formal proofs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Sylvie Boldo
    • 1
    • 2
  • François Clément
    • 3
  • Jean-Christophe Filliâtre
    • 2
    • 1
  • Micaela Mayero
    • 4
    • 5
  • Guillaume Melquiond
    • 1
    • 2
  • Pierre Weis
    • 3
  1. 1.INRIA Saclay - Île-de-France, ProValOrsay
  2. 2.LRIUniversité Paris-Sud, CNRSOrsay
  3. 3.INRIA Paris - Rocquencourt, EstimeLe Chesnay
  4. 4.LIPNUniversité Paris 13, LCRVilletaneuse
  5. 5.LIPArénaire (INRIA Grenoble - Rhône-Alpes, CNRS UMR 5668, UCBL, ENS Lyon)Lyon

Personalised recommendations