Formal Proof of a Wave Equation Resolution Scheme: The Method Error

  • Sylvie Boldo
  • François Clément
  • Jean-Christophe Filliâtre
  • Micaela Mayero
  • Guillaume Melquiond
  • Pierre Weis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6172)

Abstract

Popular finite difference numerical schemes for the resolution of the one-dimensional acoustic wave equation are well-known to be convergent. We present a comprehensive formalization of the simplest scheme and formally prove its convergence in Coq. The main difficulties lie in the proper definition of asymptotic behaviors and the implicit way they are handled in the mathematical pen-and-paper proofs. To our knowledge, this is the first time this kind of mathematical proof is machine-checked.

Keywords

partial differential equation acoustic wave equation numerical scheme Coq formal proofs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Thomas, J.W.: Numerical Partial Differential Equations: Finite Difference Methods. Texts in Applied Mathematics, vol. 22. Springer, Heidelberg (1995)MATHGoogle Scholar
  2. 2.
    Zwillinger, D.: Handbook of Differential Equations. Academic Press, London (1998)MATHGoogle Scholar
  3. 3.
    Dutertre, B.: Elements of Mathematical Analysis in PVS. In: von Wright, J., Harrison, J., Grundy, J. (eds.) TPHOLs 1996. LNCS, vol. 1125, pp. 141–156. Springer, Heidelberg (1996)Google Scholar
  4. 4.
    Harrison, J.: Theorem Proving with the Real Numbers. Springer, Heidelberg (1998)MATHGoogle Scholar
  5. 5.
    Fleuriot, J.D.: On the Mechanization of Real Analysis in Isabelle/HOL. In: Aagaard, M.D., Harrison, J. (eds.) TPHOLs 2000. LNCS, vol. 1869, pp. 145–161. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. 6.
    Mayero, M.: Formalisation et automatisation de preuves en analyses réelle et numérique. PhD thesis, Université Paris VI (2001)Google Scholar
  7. 7.
    Gamboa, R., Kaufmann, M.: Nonstandard Analysis in ACL2. Journal of Automated Reasoning 27(4), 323–351 (2001)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Geuvers, H., Niqui, M.: Constructive Reals in Coq: Axioms and Categoricity. In: Callaghan, P., Luo, Z., McKinna, J., Pollack, R. (eds.) TYPES 2000. LNCS, vol. 2277, pp. 79–95. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Cruz-Filipe, L.: A Constructive Formalization of the Fundamental Theorem of Calculus. In: Geuvers, H., Wiedijk, F. (eds.) TYPES 2002. LNCS, vol. 2646, pp. 108–126. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Mayero, M.: Using Theorem Proving for Numerical Analysis (Correctness Proof of an Automatic Differentiation Algorithm). In: Carreño, V.A., Muñoz, C.A., Tahar, S. (eds.) TPHOLs 2002. LNCS, vol. 2410, pp. 246–262. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Harrison, J.: A HOL Theory of Euclidean Space. In: Hurd, J., Melham, T.F. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 114–129. Springer, Heidelberg (2005)Google Scholar
  12. 12.
    Avigad, J., Donnelly, K.: A Decision Procedure for Linear ”Big O” Equations. J. Autom. Reason. 38(4), 353–373 (2007)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Bécache, E.: Étude de schémas numériques pour la résolution de l’équation des ondes. Master Modélisation et simulation, Cours ENSTA (2009), http://www-rocq.inria.fr/~becache/COURS-ONDES/Poly-num-0209.pdf
  14. 14.
    Achenbach, J.D.: Wave Propagation in Elastic Solids. North Holland, Amsterdam (1973)MATHGoogle Scholar
  15. 15.
    Brekhovskikh, L.M., Goncharov, V.: Mechanics of Continua and Wave Dynamics. Springer, Heidelberg (1994)MATHGoogle Scholar
  16. 16.
    Newton, I.: Axiomata, sive Leges Motus. In: Philosophiae Naturalis Principia Mathematica, London, vol. 1 (1687)Google Scholar
  17. 17.
    le Rond D’Alembert, J.: Recherches sur la courbe que forme une corde tendue mise en vibrations. In: Histoire de l’Académie Royale des Sciences et Belles Lettres (Année 1747), vol. 3, pp. 214–249. Haude et Spener, Berlin (1749)Google Scholar
  18. 18.
    John, F.: Partial Differential Equations. Springer, Heidelberg (1986)Google Scholar
  19. 19.
    Courant, R., Friedrichs, K., Lewy, H.: On the partial difference equations of mathematical physics. IBM Journal of Research and Development 11(2), 215–234 (1967)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development. Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer Science. Springer, Heidelberg (2004)Google Scholar
  21. 21.
    Boldo, S.: Floats & Ropes: a case study for formal numerical program verification. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 91–102. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  22. 22.
    Letouzey, P.: A New Extraction for Coq. In: Geuvers, H., Wiedijk, F. (eds.) TYPES 2002. LNCS, vol. 2646, pp. 200–219. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  23. 23.
    Bertot, Y., Gonthier, G., Ould Biha, S., Pasca, I.: Canonical big operators. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 86–101. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Sylvie Boldo
    • 1
    • 2
  • François Clément
    • 3
  • Jean-Christophe Filliâtre
    • 2
    • 1
  • Micaela Mayero
    • 4
    • 5
  • Guillaume Melquiond
    • 1
    • 2
  • Pierre Weis
    • 3
  1. 1.INRIA Saclay - Île-de-France, ProValOrsay
  2. 2.LRIUniversité Paris-Sud, CNRSOrsay
  3. 3.INRIA Paris - Rocquencourt, EstimeLe Chesnay
  4. 4.LIPNUniversité Paris 13, LCRVilletaneuse
  5. 5.LIPArénaire (INRIA Grenoble - Rhône-Alpes, CNRS UMR 5668, UCBL, ENS Lyon)Lyon

Personalised recommendations