Keeping Secrets in Possibilistic Knowledge Bases with Necessity-Valued Privacy Policies

  • Lena Wiese
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6178)

Abstract

Controlled Query Evaluation (CQE) is a logical framework for the protection of secrets in databases. In this article, we extend the CQE framework to possibilistic logic: knowledge base, a priori knowledge and privacy policy are expressed with necessity-valued formulas that represent several degrees of certainty. We present a formal security definition and analyze an appropriate controlled evaluation algorithm for this possibilistic case.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Biskup, J., Weibert, T.: Keeping secrets in incomplete databases. International Journal of Information Security 7(3), 199–217 (2008)CrossRefGoogle Scholar
  2. 2.
    Biskup, J., Bonatti, P.: Controlled query evaluation for enforcing confidentiality in complete information systems. International Journal of Information Security 3, 14–27 (2004)CrossRefGoogle Scholar
  3. 3.
    Biskup, J., Tadros, C., Wiese, L.: Towards controlled query evaluation for incomplete first-order databases. In: Link, S. (ed.) FoIKS 2010. LNCS, vol. 5956, pp. 230–247. Springer, Heidelberg (2010)Google Scholar
  4. 4.
    Benferhat, S., Dubois, D., Prade, H.: Towards a possibilistic logic handling of preferences. Applied Intelligence 14(3), 303–317 (2001)MATHCrossRefGoogle Scholar
  5. 5.
    Dubois, D., Prade, H.: Possibilistic logic: a retrospective and prospective view. Fuzzy Sets and Systems 144(1), 3–23 (2004)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Lang, J.: Possibilistic logic: complexity and algorithms. In: Lang, J. (ed.) Handbook of Defeasible Reasoning and Uncertainty Management Systems, vol. 5, pp. 179–200. Kluwer Academic Publishers, Dordrecht (2000)Google Scholar
  7. 7.
    Tadros, C., Wiese, L.: Using SAT-solvers to compute inference-proof database instances. In: Garcia-Alfaro, J. (ed.) DPM 2009 and SETOP 2009. LNCS, vol. 5939, pp. 65–77. Springer, Heidelberg (2009)Google Scholar
  8. 8.
    Ciriani, V., di Vimercati, S.D.C., Foresti, S., Samarati, P.: k-anonymity. In: Secure Data Management in Decentralized Systems. Advances in Information Security, vol. 33, pp. 323–353. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Dawson, S., di Vimercati, S.D.C., Lincoln, P., Samarati, P.: Minimal data upgrading to prevent inference and association. In: Symposium on Principles of Database Systems (PODS 1999), pp. 114–125. ACM Press, New York (1999)Google Scholar
  10. 10.
    Evfimievski, A.V., Fagin, R., Woodruff, D.P.: Epistemic privacy. In: Symposium on Principles of Database Systems (PODS 2008), pp. 171–180. ACM, New York (2008)Google Scholar
  11. 11.
    Stouppa, P., Studer, T.: Data privacy for knowledge bases. In: Artemov, S., Nerode, A. (eds.) LFCS 2009. LNCS, vol. 5407, pp. 409–421. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Halpern, J.Y., O’Neill, K.R.: Secrecy in multiagent systems. ACM Transactions on Information and System Security (TISSEC) 12(1) (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Lena Wiese
    • 1
  1. 1.Technische Universität DortmundGermany

Personalised recommendations