Construction of Asynchronous Communicating Systems: Weak Termination Guaranteed!

  • Kees M. van Hee
  • Natalia Sidorova
  • Jan Martijn van der Werf
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6144)


Correctness of asynchronously communicating systems (ACS) is known to be a hard problem, which became even more actual after the introduction of Service Oriented Architectures and Service Oriented Computing. In this paper, we focus on one particular correctness property, namely weak termination: at any moment of the system execution, at least one option to terminate should be available. We present a compositional method for constructing an ACS that guarantees weak termination. The method allows for refinement of single components, refinement of compositions of components and the creation of new components in the system. For two important classes of ACS, weak termination follows directly from their structure. These classes focus on the concurrency over components and on the implementation of protocols and communicating choices.


State Machine Weak Termination Business Process Execution Language Input Place Couple Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    van der Aalst, W.M.P., Beisiegel, M., van Hee, K.M., König, D., Stahl, C.: An SOA-Based Architecture Framework. International Journal of Business Process Integration and Management 2(2), 91–101 (2007)CrossRefGoogle Scholar
  2. 2.
    van der Aalst, W.M.P., van Hee, K.M., Massuthe, P., Sidorova, N., van der Werf, J.M.E.M.: Compositional service trees. In: Franceschinis, G., Wolf, K. (eds.) ICATPN 2009. LNCS, vol. 5606, pp. 283–302. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    de Alfaro, L., Henzinger, T.A.: Interface automata. SIGSOFT Softw. Eng. Notes 26(5), 109–120 (2001)CrossRefGoogle Scholar
  4. 4.
    Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services Concepts, Architectures and Applications. Springer, Heidelberg (2004)zbMATHGoogle Scholar
  5. 5.
    Alves, A., Arkin, A., Askary, S., et al.: Web Services Business Process Execution Language Version 2.0 (OASIS Standard). WS-BPEL TC OASIS (2007),
  6. 6.
    Basten, T., van der Aalst, W.M.P.: Inheritance of Behavior. Journal of Logic and Algebraic Programming 47(2), 47–145 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Bell, M.: Service-Oriented Modeling (SOA): Service Analysis, Design, and Architecture. Wiley, Chichester (2008)Google Scholar
  8. 8.
    Berthelot, G.: Transformations and Decompositions of Nets. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) APN 1986. LNCS, vol. 254, pp. 360–376. Springer, Heidelberg (1987)Google Scholar
  9. 9.
    Decker, G., Weske, M.: Local enforceability in interaction petri nets. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 305–319. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    van Hee, K.M., Sidorova, N., Voorhoeve, M.: Soundness and Separability of Workflow Nets in the Stepwise Refinement Approach. In: van der Aalst, W.M.P., Best, E. (eds.) ICATPN 2003. LNCS, vol. 2679, pp. 337–356. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Kindler, E.: A compositional partial order semantics for petri net components. In: Azéma, P., Balbo, G. (eds.) ICATPN 1997. LNCS, vol. 1248, pp. 235–252. Springer, Heidelberg (1997)Google Scholar
  12. 12.
    Murata, T.: Petri Nets: Properties, Analysis and Applications. Proceedings of the IEEE 77(4), 541–580 (1989)CrossRefGoogle Scholar
  13. 13.
    Object Management Group. Business Process Model and Notation (BPMN) Specification 2.0 V0.9 (November 2008)Google Scholar
  14. 14.
    Reisig, W.: Petri Nets: An Introduction. Monographs in Theoretical Computer Science: An EATCS Series, vol. 4. Springer, Berlin (1985)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Kees M. van Hee
    • 1
  • Natalia Sidorova
    • 1
  • Jan Martijn van der Werf
    • 1
  1. 1.Department of Mathematics and Computer ScienceTechnische Universiteit EindhovenEindhovenThe Netherlands

Personalised recommendations