Managing Variability in Workflow with Feature Model Composition Operators

  • Mathieu Acher
  • Philippe Collet
  • Philippe Lahire
  • Robert France
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6144)


In grid-based scientific applications, building a workflow essentially involves composing parameterized services describing families of services and then configuring the resulting workflow product line. In domains (e.g., medical imaging) in which many different kinds of highly parameterized services exist, there is a strong need to manage variabilities so that scientists can more easily configure and compose services with consistency guarantees. In this paper, we propose an approach in which variable points in services are described with several separate feature models, so that families of workflow can be defined as compositions of feature models. A compositional technique then allows reasoning about the compatibility between connected services to ensure consistency of an entire workflow, while supporting automatic propagation of variability choices when configuring services.


Medical Image Composition Operator Service Composition Connected Service Medical Imaging Service 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Taylor, I., Deelman, E., Gannon, D., Shields, M.: Workflows for e-Science. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Vigder, M., Vinson, N.G., Singer, J., Stewart, D., Mews, K.: Supporting scientists’ everyday work: Automating scientific workflows. IEEE Software 25, 52–58 (2008)CrossRefGoogle Scholar
  3. 3.
    McPhillips, T., Bowers, S., Zinn, D., Ludäscher, B.: Scientific workflow design for mere mortals. Future Generation Computer Systems 25(5), 541–551 (2009)CrossRefGoogle Scholar
  4. 4.
    Acher, M., Collet, P., Lahire, P.: Issues in Managing Variability of Medical Imaging Grid Services. In: Olabarriaga, S., Lingrand, D., Montagnat, J. (eds.) MICCAI-Grid, New York, NY, USA, p. 10 (2008)Google Scholar
  5. 5.
    Acher, M., Collet, P., Lahire, P., Montagnat, J.: Imaging Services on the Grid as a Product Line: Requirements and Architecture. In: Service-Oriented Architectures and Software Product Lines (SOAPL 2008) workshop at 2008. IEEE, Los Alamitos (2008)Google Scholar
  6. 6.
    Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering: Foundations, Principles and Techniques. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  7. 7.
    Acher, M., Collet, P., Lahire, P., France, R.: Composing Feature Models. In: Gašević, D. (ed.) SLE 2009. LNCS, vol. 5969, pp. 62–81. Springer, Heidelberg (2010)Google Scholar
  8. 8.
    Czarnecki, K., Eisenecker, U.: Generative Programming: Methods, Tools, and Applications. Addison-Wesley, Reading (2000)Google Scholar
  9. 9.
    Batory, D.S.: Feature models, grammars, and propositional formulas. In: Obbink, H., Pohl, K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Schobbens, P.Y., Heymans, P., Trigaux, J.C., Bontemps, Y.: Generic semantics of feature diagrams. Comput. Netw. 51(2), 456–479 (2007)zbMATHCrossRefGoogle Scholar
  11. 11.
    Germain, C., Breton, V., et al.: XIX. In: Grid Analysis of Radiological Data. Handbook of Research on Computational Grid Technologies for Life Sciences, Biomedicine and Healthcare, p. 30 (2009)Google Scholar
  12. 12.
    Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The Physiology of the Grid: An Open Grid Services Architecture for Distributed Systems Integration. Technical report, Open Grid Service Infrastructure WG, GGF (June 2002)Google Scholar
  13. 13.
    Deelstra, S., Sinnema, M., Bosch, J.: Product derivation in software product families: a case study. Journal of Systems and Software 74(2), 173–194 (2005)CrossRefGoogle Scholar
  14. 14.
    Apel, S., Kästner, C.: An overview of feature-oriented software development. Journal of Object Technology (JOT) 8(5), 49–84 (2009)Google Scholar
  15. 15.
  16. 16.
    Muller, P.A., Fleurey, F., Jézéquel, J.M.: Weaving executability into object-oriented meta-languages. In: Briand, L.C., Williams, C. (eds.) MoDELS 2005. LNCS, vol. 3713, pp. 264–278. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Lin, C., Lu, S., Fei, X., Pai, D., Hua, J.: A task abstraction and mapping approach to the shimming problem in scientific workflows. In: SCC 2009: International Conference on Services Computing, pp. 284–291. IEEE, Los Alamitos (2009)CrossRefGoogle Scholar
  18. 18.
    Czarnecki, K., Helsen, S., Eisenecker, U.: Staged Configuration through Specialization and Multilevel Configuration of Feature Models. Software Process: Improvement and Practice 10(2), 143–169 (2005)CrossRefGoogle Scholar
  19. 19.
    Tun, T.T., Boucher, Q., Classen, A., Hubaux, A., Heymans, P.: Relating requirements and feature configurations: A systematic approach. In: SPLC 2009, pp. 201–210. IEEE Computer Society, Los Alamitos (2009)Google Scholar
  20. 20.
    Metzger, A., Pohl, K., Heymans, P., Schobbens, P.Y., Saval, G.: Disambiguating the documentation of variability in software product lines: A separation of concerns, formalization and automated analysis. In: RE 2007, pp. 243–253 (2007)Google Scholar
  21. 21.
    Alves, V., Gheyi, R., Massoni, T., Kulesza, U., Borba, P., Lucena, C.: Refactoring product lines. In: GPCE 2006, pp. 201–210. ACM, New York (2006)CrossRefGoogle Scholar
  22. 22.
    Segura, S., Benavides, D., Ruiz-Cortés, A., Trinidad, P.: Automated merging of feature models using graph transformations. Post-proceedings of the Second Summer School on GTTSE 5235, 489–505 (2008)Google Scholar
  23. 23.
    Hartmann, H., Trew, T.: Using feature diagrams with context variability to model multiple product lines for software supply chains. In: SPLC 2008, pp. 12–21. IEEE, Los Alamitos (2008)Google Scholar
  24. 24.
    Thüm, T., Batory, D., Kästner, C.: Reasoning about edits to feature models. In: ICSE 2009. IEEE Computer Society, Los Alamitos (2009)Google Scholar
  25. 25.
    Hubaux, A., Classen, A., Heymans, P.: Formal modelling of feature configuration workflows. In: SPLC 2009, pp. 221–230. IEEE Computer Society, Los Alamitos (2009)Google Scholar
  26. 26.
    van Ommering, R., Bosch, J.: Widening the scope of software product lines - from variation to composition. In: Chastek, G.J. (ed.) SPLC 2002. LNCS, vol. 2379, pp. 328–347. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  27. 27.
    van der Storm, T.: Variability and component composition. In: Bosch, J., Krueger, C. (eds.) ICOIN 2004 and ICSR 2004. LNCS, vol. 3107, pp. 157–166. Springer, Heidelberg (2004)Google Scholar
  28. 28.
    Reiser, M.O., Weber, M.: Multi-level feature trees: A pragmatic approach to managing highly complex product families. Requir. Eng. 12(2), 57–75 (2007)CrossRefGoogle Scholar
  29. 29.
    Dustdar, S., Schreiner, W.: A survey on web services composition. Int. J. Web Grid Serv. 1(1), 1–30 (2005)CrossRefGoogle Scholar
  30. 30.
    Charfi, A., Mezini, M.: AO4BPEL: an aspect-oriented extension to BPEL. World Wide Web 10(3), 309–344 (2007)CrossRefGoogle Scholar
  31. 31.
    Schnieders, A., Puhlmann, F.: Variability modeling and product derivation in E-Business process families. In: Technologies for Business Information Systems, pp. 63–74. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Mathieu Acher
    • 1
  • Philippe Collet
    • 1
  • Philippe Lahire
    • 1
  • Robert France
    • 2
  1. 1.I3S Laboratory (CNRS UMR 6070)University of Nice Sophia Antipolis, FranceSophia Antipolis CedexFrance
  2. 2.Computer Science DepartmentColorado State UniversityUSA

Personalised recommendations