Finding Maximum Edge Bicliques in Convex Bipartite Graphs

  • Doron Nussbaum
  • Shuye Pu
  • Jörg-Rüdiger Sack
  • Takeaki Uno
  • Hamid Zarrabi-Zadeh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6196)

Abstract

A bipartite graph G = (A, B, E) is convex on B if there exists an ordering of the vertices of B such that for any vertex v ∈ A, vertices adjacent to v are consecutive in B. A complete bipartite subgraph of a graph G is called a biclique of G. In this paper, we study the problem of finding the maximum edge-cardinality biclique in convex bipartite graphs. Given a bipartite graph G = (A, B, E) which is convex on B, we present a new algorithm that computes the maximum edge-cardinality biclique of G in O(n log3n loglogn) time and O(n) space, where n = |A|. This improves the current O(n2) time bound available for the problem.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexe, G., Alexe, S., Crama, Y., Foldes, S., Hammer, P.L., Simeone, B.: Consensus algorithms for the generation of all maximal bicliques 145(1), 11–21 (2004)Google Scholar
  2. 2.
    Ben-Dor, A., Chor, B., Karp, R., Yakhini, Z.: Discovering local structure in gene expression data: the order-preserving submatrix problem. J. Comput. Biol. 10(3-4), 373–384 (2003)CrossRefGoogle Scholar
  3. 3.
    Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci. 13(3), 335–379 (1976)MATHMathSciNetGoogle Scholar
  4. 4.
    Brodal, G., Georgiadis, L., Hansen, K., Katriel, I.: Dynamic matchings in convex bipartite graphs, pp. 406–417 (2007)Google Scholar
  5. 5.
    Chen, Y., Church, G.: Biclustering of expression data. In: Proc. 8th Internat. Conf. Intelligent Systems for Molecular Biology, pp. 93–103 (2000)Google Scholar
  6. 6.
    Dawande, M., Keskinocak, P., Swaminathan, J.M., Tayur, S.: On bipartite and multipartite clique problems  41(2), 388–403 (2001)Google Scholar
  7. 7.
    Dias, V.M., de Figueiredo, C.M., Szwarcfiter, J.L.: Generating bicliques of a graph in lexicographic order. Theoretical Comput. Sci. 337(1-3), 240–248 (2005)MATHCrossRefGoogle Scholar
  8. 8.
    Dias, V.M., de Figueiredo, C.M., Szwarcfiter, J.L.: On the generation of bicliques of a graph  155(14), 1826–1832 (2007)Google Scholar
  9. 9.
    Feige, U.: Relations between average case complexity and approximation complexity, pp. 534–543 (2002)Google Scholar
  10. 10.
    Fries, O., Mehlhorn, K., Näher, S., Tsakalidis, A.: A loglogn data structure for three-sided range queries. Inf. Process. Lett. 25(4), 269–273 (1987)MATHCrossRefGoogle Scholar
  11. 11.
    Ganter, B., Wille, R.: Formal Concept Analysis, Mathematical Foundations. Springer, Berlin (1996)MATHGoogle Scholar
  12. 12.
    Gély, A., Nourine, L., Sadi, B.: Enumeration aspects of maximal cliques and bicliques  157(7), 1447–1459 (2009)Google Scholar
  13. 13.
    Glover, F.: Maximum matching in a convex bipartite graph 14, 313–316 (1967)Google Scholar
  14. 14.
    Goerdt, A., Lanka, A.: An approximation hardness result for bipartite clique. In: Technical Report 48, Electronic Colloquium on Computation Complexity (2004)Google Scholar
  15. 15.
    Habib, M., McConnell, R., Paul, C., Viennot, L.: Lex-BFS and partition refinement, with applications to transitive orientation, interval graph recognition and consecutive ones testing. Theoretical Comput. Sci. 234(1-2), 59–84 (2000)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Kloks, T., Kratsch, D.: Computing a perfect edge without vertex elimination ordering of a chordal bipartite graph. Inf. Process. Lett. 55(1), 11–16 (1995)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Liang, Y.D., Chang, M.: Minimum feedback vertex sets in cocomparability graphs and convex bipartite graphs 34(5), 337–346 (1997)Google Scholar
  18. 18.
    Lipski, W., Preparata, F.P.: Efficient algorithms for finding maximum matchings in convex bipartite graphs and related problems 15(4), 329–346 (1981)Google Scholar
  19. 19.
    Madeira, S.C., Oliveira, A.L.: Biclustering algorithms for biological data analysis: A survey  1(1), 24–45 (2004)Google Scholar
  20. 20.
    Meidanis, J., Porto, O., Telles, G.P.: On the consecutive ones property  88(1-3), 325–354 (1998)Google Scholar
  21. 21.
    Mishra, N., Ron, D., Swaminathan, R.: On finding large conjunctive clusters. In: Proc. 16th Annu. Conf. Computational Learning Theory, pp. 448–462 (2003)Google Scholar
  22. 22.
    Peeters, R.: The maximum edge biclique problem is NP-complete  131(3), 651–654 (2003)Google Scholar
  23. 23.
    Soares, J., Stefanes, M.: Algorithms for maximum independent set in convex bipartite graphs 53(1), 35–49 (2009)Google Scholar
  24. 24.
    Steiner, G., Yeomans, J.S.: A linear time algorithm for maximum matchings in convex, bipartite graphs. Comput. Math. Appl. 31(12), 91–96 (1996)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Tan, J.: Inapproximability of maximum weighted edge biclique and its applications. In: Agrawal, M., Du, D.-Z., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 282–293. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  26. 26.
    Tanay, A., Sharan, R., Shamir, R.: Discovering statistically significant biclusters in gene expression data. Bioinformatics 18(Supplement 1), S136–S144 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Doron Nussbaum
    • 1
  • Shuye Pu
    • 2
  • Jörg-Rüdiger Sack
    • 1
  • Takeaki Uno
    • 3
  • Hamid Zarrabi-Zadeh
    • 1
  1. 1.School of Computer ScienceCarleton UniversityOttawaCanada
  2. 2.Program in Molecular Structure and FunctionHospital for Sick ChildrenTorontoCanada
  3. 3.National Institute of Informatics2-1-2 HitotsubashiTokyoJapan

Personalised recommendations