Fractional Dynamics of Open Quantum Systems

  • Vasily E. Tarasov
Part of the Nonlinear Physical Science book series (NPS, volume 0)


We can describe an open quantum system starting from a closed Hamiltonian system if the open system is a part of the closed system (Weiss, 1993). However situations can arise where it is difficult or impossible to find a Hamiltonian system comprising the given quantum system. As a result, the theory of open and non-Hamiltonian quantum systems can be considered as a fundamental generalization (Kossakowski, 1972; Davies, 1976; Ingarden and Kossakowski, 1975; Tarasov, 2005, 2008b) of the quantum Hamiltonian mechanics. The quantum operations that describe dynamics of open systems can be considered as real completely positive trace-preserving superoperators on the operator space. These superoperators form a completely positive semigroup. The infinitesimal generator of this semigroup is completely dissipative (Kossakowski, 1972; Davies, 1976; Ingarden and Kossakowski, 1975; Tarasov, 2008b). Fractional power of operators (Balakrishnan, 1960; Komatsu, 1966; Berens et al., 1968; Yosida, 1995; Martinez and Sanz, 2000) and superoperators (Tarasov, 2008b, 2009a) can be used as a possible approach to describe fractional dynamics of open quantum systems. We consider superoperators that are fractional powers of completely dissipative superoperators (Tarasov, 2009a). We prove that the suggested superoperators are infinitesimal generators of completely positive semigroups for fractional quantum dynamics. The quantum Markovian equation, which includes an explicit form of completely dissipative superoperator, is the most general type of Markovian master equation describing non-unitary evolution of the density operator that is trace-preserving and completely positive for any initial condition.


Quantum State Quantum System Density Operator Fractional Dynamics Fractional Power 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. R. Alicki, K. Lendi, 1987, Quantum Dynamical Semigroups and Applications, Springer, Berlin.zbMATHGoogle Scholar
  2. C. Anastopoulous, J.J. Halliwell, 1995, Generalized uncertainty relations and longtime limits for quantum Brownian motion models, Physical Review D, 51, 6870–6885.MathSciNetADSCrossRefGoogle Scholar
  3. V. Balakrishnan, 1960, Fractional power of closed operator and the semigroup generated by them, Pacific Journal of Mathematics, 10, 419–437.MathSciNetzbMATHGoogle Scholar
  4. H. Barnum, C.M. Caves, C.A. Fuchs, R. Jozsa, B. Schumacher, 1996, Noncommuting mixed states cannot be broadcast, Physical Review Letters, 76, 2818–2821.ADSCrossRefGoogle Scholar
  5. S. Bochner, 1949, Diffusion equations and stochastic processes, Proceedings of the National Academy of Sciences USA, 35, 369–370.MathSciNetADSCrossRefGoogle Scholar
  6. H. Berens, P.L. Butzer, U. Westphal, 1968, Representation of fractional powers of infinitesimal generators of semigroups, Bulletin of the American Mathematical Society, 74, 191–196.MathSciNetzbMATHCrossRefGoogle Scholar
  7. V. Buzek, M. Hillery, 1996, Quantum copying: Beyond the no-cloning theorem, Physical Review A, 54, 1844–1852.MathSciNetADSCrossRefGoogle Scholar
  8. T.R. Cech, 1986, A model for the RNA-catalyzed replication of RNA, Proceedings of the National Academy of Sciences USA, 83, 4360–4363.ADSCrossRefGoogle Scholar
  9. V. Daftardar-Gejji, A. Babakhani, 2004, Analysis of a system of fractional differential equations, Journal of Mathematical Analysis and Applications, 293, 511–522.MathSciNetzbMATHCrossRefGoogle Scholar
  10. E.P. Davies, 1970, Quantum stochastic processes II, Communication in Mathematical Physics, 19, 83–105.ADSzbMATHCrossRefGoogle Scholar
  11. E.B. Davies, 1976, Quantum Theory of Open Systems, Academic Press, London, New York, San Francisco.zbMATHGoogle Scholar
  12. E.B. Davies, 1977, Quantum dynamical semigroups and neutron diffusion equation, Reports in Mathematical Physics, 11, 169–188.ADSzbMATHCrossRefGoogle Scholar
  13. E.B. Davies, 1981, Symmetry breaking for molecular open systems, Annales de l’Institut Henri Poincaré, Section A, 35, 149–171.zbMATHGoogle Scholar
  14. K. Dietz, 2002, Asymptotic solutions of Lindblad equations, Journal of Physics A, 35, 10573–10590.MathSciNetzbMATHCrossRefGoogle Scholar
  15. L.M. Duan, G.C. Guo, 1998, A probabilistic cloning machine for replicating two non-orthogonal states, Physical Letters A, 243, 261–264.MathSciNetADSzbMATHCrossRefGoogle Scholar
  16. R.A. Freitas Jr., R.C. Merkle, 2004, Kinematic Self-Replicating Machines, Landes Bioscience, see also Scholar
  17. C.W. Gardiner, 1985, Handbook of Stochastic Methods for Physics, Chemistry and Natural Sciences, 2nd ed., Springer, Berlin.Google Scholar
  18. V. Gorini, A. Kossakowski, E.C.G. Sudarshan, 1976, Completely positive dynamical semigroups of N-level systems, Journal of Mathematical Physics, 17, 821–825.MathSciNetADSCrossRefGoogle Scholar
  19. V. Gorini, A. Frigerio, M. Verri, A. Kossakowski, E.C.G. Sudarshan, 1978, Properties of quantum markovian master equations, Reports in Mathematical Physics, 13, 149–173.MathSciNetADSzbMATHCrossRefGoogle Scholar
  20. K.E. Hellwing, K. Kraus, 1969, Pure operations and measurements, Communication in Mathematical Physics, 11, 214–220.ADSCrossRefGoogle Scholar
  21. K.E. Hellwing, K. Kraus, 1970, Operations and measurements II, Communication in Mathematical Physics, 16, 142–147.ADSCrossRefGoogle Scholar
  22. E. Hille, R.S. Phillips, 1957, Functional Analysis and Semigroups, American Mathematical Society, Providence.zbMATHGoogle Scholar
  23. R.S. Ingarden, A. Kossakowski, 1975, On the connection of nonequilibrium information thermodynamics with non-Hamiltonian quantum mechanics of open systems, Annals of Physics, 89, 451–485.MathSciNetADSCrossRefGoogle Scholar
  24. A. Isar, A. Sandulescu, H. Scutaru, E. Stefanescu, W. Scheid, 1994, Open quantum systems, International Journal of Modern Physics E, 3, 635–714; and E-print: quant-ph/0411189.MathSciNetADSCrossRefGoogle Scholar
  25. A. Isar, A. Sandulescu, W. Scheid, 1996, Phase space representation for open quantum systems with the Lindblad theory, International Journal of Modern Physics B, 10, 2767–2779; and E-print: quant-ph/9605041.MathSciNetADSzbMATHCrossRefGoogle Scholar
  26. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, 2006, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam.zbMATHGoogle Scholar
  27. H. Komatsu, 1966, Fractional powers of operators, Pacific Journal of Mathematics, 19, 285–346.MathSciNetzbMATHGoogle Scholar
  28. A. Kossakowski, 1972, On quantum statistical mechanics of non-Hamiltonian systems, Reports in Mathematical Physics, 3, 247–274.MathSciNetADSCrossRefGoogle Scholar
  29. K. Kraus, 1971, General state changes in quantum theory, Annals of Physics, 64, 311–335.MathSciNetADSzbMATHCrossRefGoogle Scholar
  30. K. Kraus, 1983, States, Effects and Operations. Fundamental Notions of Quantum Theory, Springer, Berlin.zbMATHCrossRefGoogle Scholar
  31. S.G. Krein, 1971, Linear Differential Equations in Banach Space, Translations of Mathematical Monographs, Vol.29, American Mathematical Society, Translated from Russian: Nauka, Moscow, 1967.Google Scholar
  32. D.A. Lidar, Z. Bihary, K.B. Whaley, 2001, From completely positive maps to the quantum Markovian semigroup master equation, Chemical Physics, 268, 35–53; and E-print: cond-mat/0011204.ADSCrossRefGoogle Scholar
  33. G. Lindblad, 1976a, On the generators of quantum dynamical semigroups, Communication in Mathematical Physics, 48, 119–130.MathSciNetADSzbMATHCrossRefGoogle Scholar
  34. G. Lindblad, 1976b, Brownian motion of a quantum harmonic oscillator, Reports in Mathematical Physics, 10, 393–406.MathSciNetADSzbMATHCrossRefGoogle Scholar
  35. C. Martinez, M. Sanz, 2000, The Theory of Fractional Powers of Operators, North-Holland Mathematics Studies. Vol.187, Elsevier, Amsterdam.Google Scholar
  36. H. Nakazato, Y. Hida, K. Yuasa, B. Militello, A. Napoli, A. Messina, 2006, Solution of the Lindblad equation in the Kraus representation, Physical Review A, 74, 062113; and E-print: quant-ph/0606193.MathSciNetADSCrossRefGoogle Scholar
  37. J. von Neumann, 1966, Theory of Self-Reproducing Automata Source, University of Illinois.Google Scholar
  38. K.B. Oldham, J. Spanier, 1974, The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order, Academic Press, New York.zbMATHGoogle Scholar
  39. A. Oza, A. Pechen, J. Dominy, V. Beltrani, K. Moore, H. Rabitz, 2009, Optimization search effort over the control landscapes for open quantum systems with Krausmap evolution, Journal of Physics A, 42, 205305.MathSciNetCrossRefGoogle Scholar
  40. R.S. Phillips, 1952, On the generation of semigroups of linear operators, Pacific Journal of Mathematics, 2, 343–369.MathSciNetzbMATHGoogle Scholar
  41. A.P. Prudnikov, Yu.A. Brychkov, O.I. Marichev, 1986, Integrals and Series, Voll: Elementary Functions, Gordon and Breach, New York.Google Scholar
  42. S.G. Samko, A.A. Kubas, O.I. Marichev, 1993, Integrals and Derivatives of Fractional Order and Applications, Nauka i Tehnika, Minsk, 1987, in Russian; and Fractional Integrals and Derivatives Theory and Applications, Gordon and Breach, New York, 1993.Google Scholar
  43. A. Sandulescu, H. Scutaru, 1987, Open quantum systems and the damping of collective models in deep inelastic collisions, Annals of Physics, 173, 277–317.MathSciNetADSCrossRefGoogle Scholar
  44. V. Scarani, S. Iblisdir, N. Gisin, 2005, Quantum cloning, Review of Modern Physics, 11, 1225–1256.MathSciNetADSGoogle Scholar
  45. B. Schumacher, 1996, Sending entanglement through noisy quantum channels, Physical Review A, 54, 2614–2628.ADSCrossRefGoogle Scholar
  46. H. Spohn, 1976, Approach to equilibrium for completely positive dynamical semigroups of N-level systems, Reports in Mathematical Physics, 10, 189–194.MathSciNetADSCrossRefGoogle Scholar
  47. H. Spohn, 1977, An algebraic condition for the approach to equilibrium of an open N-level system, Letters in Mathematical Physics, 2, 33–38.MathSciNetADSzbMATHCrossRefGoogle Scholar
  48. V.E. Tarasov, 2002a, Pure stationary states of open quantum systems, Physical Review E, 66, 056116.MathSciNetADSCrossRefGoogle Scholar
  49. V.E. Tarasov, 2002b, Quantum computer with mixed states and four-valued logic, Journal of Physics A, 35, 5207–5235.MathSciNetzbMATHCrossRefGoogle Scholar
  50. V.E. Tarasov, 2002c, Stationary states of dissipative quantum systems, Physics Letters A, 299, 173–178.MathSciNetADSzbMATHCrossRefGoogle Scholar
  51. V.E. Tarasov, 2004, Path integral for quantum operations, Journal of Physics A, 37, 3241–3257.MathSciNetzbMATHCrossRefGoogle Scholar
  52. V.E. Tarasov, 2005, Quantum Mechanics: Lectures on Foundations of the Theory, 2nd ed., Vuzovskaya Kniga, Moscow. In Russian.Google Scholar
  53. V.E. Tarasov, 2008a, Fractional Heisenberg equation, Physics Letters A, 372, 2984–2988.MathSciNetADSzbMATHCrossRefGoogle Scholar
  54. V.E. Tarasov, 2008b, Quantum Mechanics of Non-Hamiltonian and Dissipative Systems, Elsevier, Amsterdam.zbMATHGoogle Scholar
  55. V.E. Tarasov, 2009a, Fractional generalization of the quantum Markovian master equation, Theoretical and Mathematical Physics, 158, 179–195.MathSciNetADSzbMATHCrossRefGoogle Scholar
  56. V.E. Tarasov, 2009b, Quantum Nanotechnology, International Journal of Nanoscience, 8, 337–344.CrossRefGoogle Scholar
  57. J.D. Watson, N.H. Hopkins, J.W. Roberts, J.A. Steitz, A.M. Weiner, 1987, Molecular Biology of the Gene, Vol.2, 3th ed., Benjamin/Cumming, California, 1103–1124.Google Scholar
  58. U. Weiss, 1993, Quantum Dissipative Systems, World Scientific Publishing, Singapore.zbMATHGoogle Scholar
  59. E.P. Wigner, 1961, The probability of the existence of the self-reproducing unit, in The Logic of Personal Knowledge. Essays presented to Michael Polanyi, Routledge and Paul, London, 231–238.Google Scholar
  60. W.K. Wootters, W.H. Zurek, 1982, A single quantum cannot be cloned, Nature (London), 299, 802–803.ADSCrossRefGoogle Scholar
  61. R. Wu, A. Pechen, C. Brif, H. Rabitz, 2007, Controllability of open quantum systems with Kraus-map dynamics, Journal of Physics A, 40, 5681–5693.MathSciNetzbMATHCrossRefGoogle Scholar
  62. K. Yosida, 1995, Functional Analysis, 6th ed., Springer, Berlin.Google Scholar

Copyright information

© Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Vasily E. Tarasov
    • 1
  1. 1.Skobeltsyn Institute of Nuclear PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations