Fractional Exterior Calculus and Fractional Differential Forms

  • Vasily E. Tarasov
Part of the Nonlinear Physical Science book series (NPS, volume 0)


Differential forms and exterior calculus are important theories in mathematics. Exterior calculus have found wide applications in fields such as general relativity, theory of electromagnetic fields, thermodynamics, theory of elasticity, differential geometry, topology and nonlinear differential equations. Differential forms are the most natural language for expressing electromagnetic and gauge fields mathematically. This language is independent of coordinates. Exterior calculus of differential forms give an alternative to vector calculus, which is ultimately simpler and more nature.


Differential Form Exterior Derivative Hodge Star Operator Fractional Generalization Vector Calculus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. F. Ben Adda, 1997, Geometric interpretation of the fractional derivative, Journal of Fractional Calculus, 11, 21–52.MathSciNetzbMATHGoogle Scholar
  2. F. Ben Adda, 1998, Geometric interpretation of the differentiability and gradient of real order, Comptes Rendus de 1’Academie des Sciences. Series I: Mathematics, 326, 931–934. In French.MathSciNetzbMATHGoogle Scholar
  3. L. Belleguie, S. Mukamel, 1994, Nonlocal electrodynamics of weakly confined excitons in semiconductor nanostructures, Journal of Chemical Physics, 101, 9719–9735.ADSCrossRefGoogle Scholar
  4. E.H. Brandt, 1972, Non-local electrodynamics in a superconductor with spatially varying gap parameter, Physics Letters A, 39, 227–228.ADSCrossRefGoogle Scholar
  5. M. Chen, C.E. Byung, 1993, On the integrability of differential forms related to nonequilibrium entropy and irreversible thermodynamics, Journal of Mathematical Physics, 34, 3012–3029.MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. K. Cottrill-Shepherd, M. Naber, 2001a, Fractional differential forms, Journal of Mathematical Physics, 42, 2203–2212; and E-print math-phl0301013.MathSciNetADSzbMATHCrossRefGoogle Scholar
  7. K. Cottrill-Shepherd, M. Naber, 2001b, Fractional Differential Forms II, E-print math-phl0301016.Google Scholar
  8. V.V. Dobronravov, 1976, Foundations of Analytical Mechanics, Vishaya Shkola, Moscow. In Russian.Google Scholar
  9. B.A. Dubrovin, A.N. Fomenko, S.P. Novikov, 1992, Modern Geometry — Methods and Applications, Part I, Springer, New York.zbMATHCrossRefGoogle Scholar
  10. N. Engheta, 1998, Fractional curl operator in electromagnetics, Microwave and Optical Technology Letters, 17, 86–91.CrossRefGoogle Scholar
  11. H. Flanders, 1989, Differential forms with applications to the physical sciences, 2nd ed., Dover, New York.zbMATHGoogle Scholar
  12. J.T. Foley, A.J. Devaney, 1975, Electrodynamics of nonlocal media, Physical Review B, 12, 3104–3112.ADSCrossRefGoogle Scholar
  13. Z.D. Genchev, 1997, Generalized nonlocal electrodynamics of distributed tunnel Josephson junctions, Superconductor Science and Technology, 10, 543–546.ADSCrossRefGoogle Scholar
  14. C. Godbillon, 1969, Geometrie Differentielle et Mecanique Analytique, Hermann, Paris.Google Scholar
  15. P.A. Griffiths, 1983, Exterior Differential Systems and the Calculus of Variations, Birkhauser, Boston.zbMATHGoogle Scholar
  16. D. Husemoller, 1966, Fibre Bundles, Mcgraw-Hill, New York.zbMATHGoogle Scholar
  17. A. Hussain, S. Ishfaq, Q.A. Naqvi, 2006, Fractional curl operator and fractional waveguides, Progress In Electromagnetics Research, 63, 319–335.CrossRefGoogle Scholar
  18. A. Hussain, Q.A. Naqvi, 2006, Fractional curl operator in chiral medium and fractional non-symmetric transmission line, Progress In Electromagnetics Research, 59, 199–213.CrossRefGoogle Scholar
  19. M.V. Ivakhnychenko, E.I. Veliev, 2004, Fractional curl operator in radiation problems, 10th International Conference on Mathematical Methods in Electromagnetic Theory. Sept. 14–17, Ukraine, IEEE, 231–233.CrossRefGoogle Scholar
  20. K.K. Kazbekov, 2005, Fractional differential forms in Euclidean space, Vladikavkaz Mathematical Journal, 7, 41–54. In Russian, http: // Scholar
  21. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, 2006, Theory and Applications of Fmctional Differential Equations, Elsevier, Amsterdam.Google Scholar
  22. J. Lutzen, 1985, Liouville’s differential calculus of arbitrary order and its electrodynamical origin, in Proc. 19th Nordic Congress Mathenzaticians, Icelandic Mathematical Society, Reykjavik.Google Scholar
  23. B. Mashhoon, 2003, Vacuum electrodynamics of accelerated systems: Nonlocal Maxwell’s equations, Annalen der Physik (Leipzig), 12, 586–598.MathSciNetADSzbMATHCrossRefGoogle Scholar
  24. B. Mashhoon, 2004, Nonlocal electrodynamics of linearly accelerated systems, Physical Review A, 70, 062103.MathSciNetADSCrossRefGoogle Scholar
  25. B. Mashhoon, 2005, Nonlocal electrodynamics of rotating systems, Physical Review A, 72, 052105.ADSCrossRefGoogle Scholar
  26. M.M. Meerschaert, J. Mortensen, S.W. Wheatcraft, 2006, Fractional vector calculus for fractional advection-dispersion, Physica A, 367, 181–190; and New Zealand Mathematics Colloquium, Massey University, Palmerston North, New Zealand, December 2005, http://www.stt.msu.edd/mcubed/MathsColloq05.pdfADSCrossRefGoogle Scholar
  27. Q.A. Naqvi, M. Abbas, 2004, Complex and higher order fractional curl operator in electromagnetics, Optics Communications, 241, 349–355.ADSCrossRefGoogle Scholar
  28. S.A. Naqvi, Q.A. Naqvi, A. Hussain, 2006, Modelling of transmission through a chiral slab using fractional curl operator, Optics Communications, 266, 404–406.ADSCrossRefGoogle Scholar
  29. K. Nishimoto, 1989, Fractional Calculus: Integrations and Differentiations of Arbitrary Order, University of New Haven Press, New Haven.zbMATHGoogle Scholar
  30. T. Pierantozzi, L. Vazquez, 2005, An interpolation between the wave and diffusion equations through the fractional evolution equations Dirac like, Journal of Mathematical Physics, 46, 113512.MathSciNetADSCrossRefGoogle Scholar
  31. I. Podlubny, 1999, Fractional Differential Equations, Academic Press, New York.zbMATHGoogle Scholar
  32. S.G. Samko, A.A. Kilbas, O.I. Marichev, 1993, Integrals and Derivatives of Fractional Order and Applications, Nauka i Tehnika, Minsk, 1987, in Russian; and Fractional Integrals and Derivatives Theory and Applications, Gordon and Breach, New York, 1993.Google Scholar
  33. V.E. Tarasov, 2005a, Fractional generalization of gradient systems, Letters in Mathematical Physics, 73, 49–58.MathSciNetADSzbMATHCrossRefGoogle Scholar
  34. V.E. Tarasov, 2005b, Fractional generalization of gradient and Hamiltonian systems, Journal of Physics A, 38, 5929–5943.MathSciNetzbMATHCrossRefGoogle Scholar
  35. V.E. Tarasov, 2005c, Fractional hydrodynamic equations for fractal media, Annals of Physics, 318, 286–307.MathSciNetADSzbMATHCrossRefGoogle Scholar
  36. V.E. Tarasov, 2005d, Electromagnetic field of fractal distribution of charged particles, Physics of Plasmas, 12, 082106.ADSCrossRefGoogle Scholar
  37. V.E. Tarasov, 2005e. Multipole moments of fractal distribution of charges, Modern Physics Letters B, 19, 1107–1118.MathSciNetADSzbMATHCrossRefGoogle Scholar
  38. V.E. Tarasov, 2006a, Magnetohydrodynamics of fractal media, Physics of Plasmas, 13, 052107.MathSciNetADSCrossRefGoogle Scholar
  39. V.E. Tarasov, 2006b, Electromagnetic fields on fractals, Modern Physics Letters A, 21, 1587–1600.ADSzbMATHCrossRefGoogle Scholar
  40. V.E. Tarasov, 2006c, Fractional statistical mechanics, Chaos, 16, 033108.MathSciNetADSCrossRefGoogle Scholar
  41. V.E. Tarasov, 2006d, Continuous limit of discrete systems with long-range interaction, Journal of Physics A, 39, 14895–14910.MathSciNetzbMATHCrossRefGoogle Scholar
  42. V.E. Tarasov, 2006e, Map of discrete system into continuous, Journal of Mathematical Physics, 47, 092901.MathSciNetADSCrossRefGoogle Scholar
  43. V.E. Tarasov, 2007, Liouville and Bogoliubov equations with fractional derivatives, Modern Physics Letters B, 21, 237–248.MathSciNetADSzbMATHCrossRefGoogle Scholar
  44. V.E. Tarasov, 2008a, Fractional vector calculus and fractional Maxwell’s equations, Annals of Physics, 323, 2756–2778.MathSciNetADSzbMATHCrossRefGoogle Scholar
  45. V.E. Tarasov, 2008b, Universal electromagnetic waves in dielectric, Journal of Physics A, 20, 175223.ADSGoogle Scholar
  46. E.I. Veliev, N. Engheta, 2004, Fractional curl operator in reflection problems, 10th International Conference on Mathematical Methods in Electromagnetic Theory, Sept. 14–17, Ukraine, IEEE, 228–230.CrossRefGoogle Scholar
  47. G. Vilasi, 2001, Hamiltonian Dynamics, World Scientific Publishing, Singapore.zbMATHCrossRefGoogle Scholar
  48. C. von Westenholz, 1978, Differential Forms in Mathematical Physics, North-Holland, Amsterdam.zbMATHGoogle Scholar
  49. Chen Yong, Yan Zhen-ya, Zhang Hong-qing, 2003, Applications of fractional exterior differential in three-dimensional space, Applied Mathematics and Mechanics, 24, 256–260.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Vasily E. Tarasov
    • 1
  1. 1.Skobeltsyn Institute of Nuclear PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations