Advertisement

A Note on the Least Informative Model of a Theory

  • Jeff B. Paris
  • Soroush R. Rad
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6158)

Abstract

We consider one possible interpretation of the ‘least informative model’ of a relational and finite theory and show that it is well defined for a particular class of Π1 theories. We conjecture that it is always defined for Π1 theories.

Keywords

Uncertain reasoning probability logic inference processes Polyadic Inductive Logic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bacchus, F., Grove, A.J., Halpern, J.Y., Koller, D.: Generating new beliefs from old. In: de Mantaras, R.L., Poole, D. (eds.) Proceedings of the Tenth Annual Conference on Uncertainty in Artificial Intelligence, pp. 37–45. Morgan Kaufman, San Fransisco (1994)Google Scholar
  2. 2.
    Bacchus, F., Grove, A.J., Halpern, J.Y., Koller, D.: From statistical knowledge to degrees of belief. Artificial Intelligence 87, 75–143 (1996)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Balogh, J., Bollobas, B., Weinreich, D.: The penultimate range of growth for graph properties. European Journal of Combinatorics 22(3), 277–289 (2001)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Barnett, O.W., Paris, J.B.: Maximum Entropy inference with qualified knowledge. Logic Journal of the IGPL 16(1), 85–98 (2008)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Compton, K.J.: A Logical Approach to Asymptotic Combinatorics I. First Order Properties. Advances in Mathematics 65, 65–96 (1987)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Compton, K.J.: 0-1 Laws in Logic and Combinatorics. In: Rival, I. (ed.) Proc. 1987 NATO Adv. Study Inst. on Algorithms and Order. Reidel, Dordrecht (1988)Google Scholar
  7. 7.
    Fagin, R.: Probabilities on Finite Models. Journal of Symbolic Logic 41, 50–58 (1976)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Gaifman, H.: Concerning measures in first order calculi. Israel J. of Mathematics 24, 1–18 (1964)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Glebskiĭ, Y.V., Kogan, D.I., Liogon’kiĭ, M.I., Talanov, V.A.: Range and Degree of Formulas in the Restricted Predicate Calculus. Cybernetics 5, 142–154 (1972)Google Scholar
  10. 10.
    Grove, A.J., Halpern, J.Y., Koller, D.: Random Worlds and Maximum Entropy. Journal of Artificial Intelligence Research 2, 33–88 (1994)MATHMathSciNetGoogle Scholar
  11. 11.
    Grove, A.J., Halpern, J.Y., Koller, D.: Asymptotic conditional probabilities: the unary case. SIAM Journal of Computing 25(1), 1–51 (1996)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Grove, A.J., Halpern, J.Y., Koller, D.: Asymptotic conditional probabilities: the non-unary case. Journal of Symbolic Logic 61(1), 250–276 (1996)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Lynch, F.J.: An Extension of 0-1 Laws. Random Structures and Algorithms 5(1), 155–172 (1994)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Mendelson, E.: Introduction to Mathematical Logic, 4th edn. International Thompson Publishing (1997)Google Scholar
  15. 15.
    Paris, J.B., Rad, S.R.: Inference Processes for Quantified Predicate Knowledge. In: Hodges, W., de Queiroz, R. (eds.) Logic, Language, Information and Computation. LNCS (LNAI), vol. 5110, pp. 249–259. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Paris, J.B., Vencovská, A.: A Note on the Inevitability of Maximum Entropy. International Journal of Approximate Reasoning 4(3), 183–224 (1990)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Paris, J.B., Vencovská, A.: Common sense and stochastic independence. In: Corfield, D., Williamson, J. (eds.) Foundations of Bayesianism, pp. 203–240. Kluwer Academic Press, Dordrecht (2001)Google Scholar
  18. 18.
    Rad, S.R.: Inference Processes For Probabilistic First Order Languages. Ph.D. Thesis, University of Manchester (2009), http://www.maths.manchester.ac.uk/~jeff/
  19. 19.
    Scheinerman, E.R., Zito, J.: On the size of hereditary classes of graphs. Journal Combinatorial Theory, Ser. B 61, 16–39 (1994)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Shannon, C.E., Weaver, W.: The Mathematical Theory of Communication. University of Illinois Press (1949)Google Scholar
  21. 21.
    Shore, J.E., Johnson, R.W.: Axiomatic Derivation of the Principle of Maximum Entropy and the Principle of Minimum Cross-Entropy. IEEE, Trans. Info. Theory IT-26, 26–37 (1980)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Vencovská, A.: Binary Induction and Carnap’s Continuum. In: Proceedings of the 7th Workshop on Uncertainty Processing (WUPES), Mikulov (2006), http://www.utia.cas.cz/MTR/wupes06_papers
  23. 23.
    Williamson, J.: Objective Bayesian Probabilistic Logic. Journal of Algorithms in Cognition. Informatics and Logic 63, 167–183 (2008)MATHGoogle Scholar
  24. 24.
    Woods, A.R.: Counting Finite Models. Journal of Symbolic Logic 62(1), 925–949 (1995)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jeff B. Paris
    • 1
  • Soroush R. Rad
    • 1
  1. 1.School of MathematicsThe University of ManchesterManchester

Personalised recommendations