Advertisement

Focusing in Asynchronous Games

  • Samuel Mimram
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6158)

Abstract

Game semantics provides an interactive point of view on proofs, which enables one to describe precisely their dynamical behavior during cut elimination, by considering formulas as games on which proofs induce strategies. We are specifically interested here in relating two such semantics of linear logic, of very different flavor, which both take in account concurrent features of the proofs: asynchronous games and concurrent games. Interestingly, we show that associating a concurrent strategy to an asynchronous strategy can be seen as a semantical counterpart of the focusing property of linear logic.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramsky, S.: Sequentiality vs. concurrency in games and logic. Mathematical Structures in Computer Science 13(4), 531–565 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Abramsky, S., Ghica, D.R., Murawski, A.S., Ong, L.: Applying game semantics to compositional software modeling and verification. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 421–435. Springer, Heidelberg (2004)Google Scholar
  3. 3.
    Abramsky, S., Jagadeesan, R.: Games and Full Completeness for Multiplicative Linear Logic. The Journ. of Symb. Logic 59(2), 543–574 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Abramsky, S., Jagadeesan, R., Malacaria, P.: Full abstraction for PCF. Information and Computation 163(2), 409–470 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Abramsky, S., Melliès, P.-A.: Concurrent games and full completeness. LICS 99, 431–442 (1999)Google Scholar
  6. 6.
    Andreoli, J.M.: Logic Programming with Focusing Proofs in Linear Logic. Journal of Logic and Computation 2(3), 297–347 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Chaudhuri, K., Miller, D., Saurin, A.: Canonical Sequent Proofs via Multi-Focusing. In: International Conference on Theoretical Computer Science (2008)Google Scholar
  8. 8.
    Curien, P.L.: Definability and Full Abstraction. ENTCS 172, 301–310 (2007)MathSciNetGoogle Scholar
  9. 9.
    Ghica, D.R., Murawski, A.S.: Angelic Semantics of Fine-Grained Concurrency. In: Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 211–225. Springer, Heidelberg (2004)Google Scholar
  10. 10.
    Hyland, M., Ong, L.: On Full Abstraction for PCF: I, II and III. Information and Computation 163(2), 285–408 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Laird, J.: A game semantics of the asynchronous π-calculus. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 51–65. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Melliès, P.-A.: Asynchronous games 2: the true concurrency of innocence. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 448–465. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Melliès, P.-A.: Asynchronous games 4: a fully complete model of propositional linear logic. In: Proceedings of 20th LICS, pp. 386–395 (2005)Google Scholar
  14. 14.
    Melliès, P.-A., Mimram, S.: Asynchronous Games: Innocence without Alternation. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 395–411. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Mimram, S.: Sémantique des jeux asynchrones et réécriture 2-dimensionnelle. PhD thesis, PPS, CNRS–Univ. Paris Diderot (2008)Google Scholar
  16. 16.
    Plotkin, G.D.: LCF considered as a programming language. TCS 5(3), 223–255 (1977)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Winskel, G., Nielsen, M.: Models for concurrency. In: Handbook of Logic in Computer Science, vol. 3, pp. 1–148. Oxford University Press, Oxford (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Samuel Mimram
    • 1
  1. 1.CEA LIST / École Polytechnique, CEA LISTLaboratory for the Modelling and Analysis of Interacting SystemsFrance

Personalised recommendations