Advertisement

Higher-Order Containers

  • Thorsten Altenkirch
  • Paul Levy
  • Sam Staton
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6158)

Abstract

Containers are a semantic way to talk about strictly positive types. In previous work it was shown that containers are closed under various constructions including products, coproducts, initial algebras and terminal coalgebras. In the present paper we show that, surprisingly, the category of containers is cartesian closed, giving rise to a full cartesian closed subcategory of endofunctors. The result has interesting applications in generic programming and representation of higher order abstract syntax. We also show that the category of containers has finite limits, but it is not locally cartesian closed.

Keywords

Datatypes Category Theory Functional Programming 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abbott, M.: Categories of Containers. PhD thesis, University of Leicester (2003)Google Scholar
  2. 2.
    Abbott, M., Altenkirch, T., Ghani, N.: Containers - constructing strictly positive types. Theoretical Computer Science 342, 3–27 (2005); Applied Semantics: Selected TopicszbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Abbott, M., Altenkirch, T., Ghani, N., McBride, C.: Constructing polymorphic programs with quotient types. In: Kozen, D. (ed.) MPC 2004. LNCS, vol. 3125, pp. 2–15. Springer, Heidelberg (2004)Google Scholar
  4. 4.
    Abbott, M., Altenkirch, T., Ghani, N., McBride, C.: \(\partial\) for data: derivatives of data structures. Fundamenta Informaticae 65(1,2), 1–128 (2005)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Altenkirch, T., Morris, P.: Indexed containers. In: Twenty-Fourth IEEE Symposium in Logic in Computer Science, LICS 2009 (2009)Google Scholar
  6. 6.
    Altenkirch, T., Reus, B.: Monadic presentations of lambda terms using generalized inductive types. In: Computer Science Logic (1999)Google Scholar
  7. 7.
    Bird, R., Paterson, R.: Generalised folds for nested datatypes. Formal Aspects of Computing 11(3) (1999)Google Scholar
  8. 8.
    Carboni, A., Johnstone, P.: Connected limits, familial representability and artin glueing. Math. Structures Comput. Sci. 5, 441–459 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Fiore, M.P.: Enrichment and representation theorems for categories of domains and continuous functions (March 1996)Google Scholar
  10. 10.
    Fiore, M.P., Menni, M.: Reflective Kleisli subcategories of the category of Eilenberg-Moore algebras for factorization monads. Theory Appl. of Categ. 15 (2005)Google Scholar
  11. 11.
    Kelly, G.M.: Basic concepts of enriched category theory. Lecture Notes in Mathematics, vol. 64. Cambridge University Press, Cambridge (1982); Republished in Reprints in Theory and Applications of Categories 10, 1-136 (2005)Google Scholar
  12. 12.
    Martin-Löf, P.: An intuitionistic theory of types: Predicative part. In: Rose, H.E., Shepherdson, J.C. (eds.) Proceedings of the Logic Colloquium, pp. 73–118. North-Holland, Amsterdam (1974)Google Scholar
  13. 13.
    McBride, C., McKinna, J.: The view from the left. Journal of Functional Programming 14(1) (2004)Google Scholar
  14. 14.
    Norell, U.: Towards a Practical Programming Language based on Dependent Type Theory. PhD thesis, Chalmers University of Technology (2007)Google Scholar
  15. 15.
    Prince, R., Ghani, N., McBride, C.: Proving Properties of Lists using Containers. In: FLOPS (2008)Google Scholar
  16. 16.
    Rosický, J.: Cartesian closed exact completions. J. Pure Appl. Algebra 142(3), 261–270 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Staton, S.: General structural operational semantics through categorical logic. In: Symposium on Logic in Computer Science, pp. 166–177 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Thorsten Altenkirch
    • 1
  • Paul Levy
    • 2
  • Sam Staton
    • 3
  1. 1.University of Nottingham 
  2. 2.University of Birmingham 
  3. 3.University of Cambridge 

Personalised recommendations