Computational Interpretations of Analysis via Products of Selection Functions

  • Martín Escardó
  • Paulo Oliva
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6158)

Abstract

We show that the computational interpretation of full comprehension via two well-known functional interpretations (dialectica and modified realizability) corresponds to two closely related infinite products of selection functions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Avigad, J., Feferman, S.: Gödel’s functional (“Dialectica”) interpretation. In: Buss, S.R. (ed.) Handbook of proof theory. Studies in Logic and the Foundations of Mathematics, vol. 137, pp. 337–405. North Holland, Amsterdam (1998)CrossRefGoogle Scholar
  2. 2.
    Berardi, S., Bezem, M., Coquand, T.: On the computational content of the axiom of choice. The Journal of Symbolic Logic 63(2), 600–622 (1998)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Berger, U., Oliva, P.: Modified bar recursion and classical dependent choice. Lecture Notes in Logic 20, 89–107 (2005)MathSciNetGoogle Scholar
  4. 4.
    Berger, U., Oliva, P.: Modified bar recursion. Mathematical Structures in Computer Science 16, 163–183 (2006)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Berger, U., Schwichtenberg, H.: Program extraction from classical proofs. In: Leivant, D. (ed.) LCC 1994. LNCS, vol. 960, pp. 77–97. Springer, Heidelberg (1995)Google Scholar
  6. 6.
    Bezem, M.: Strongly majorizable functionals of finite type: a model for bar recursion containing discontinuous functionals. The Journal of Symbolic Logic 50, 652–660 (1985)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Escardó, M.H.: Infinite sets that admit fast exhaustive search. In: Proceedings of LICS, pp. 443–452 (2007)Google Scholar
  8. 8.
    Escardó, M.H., Oliva, P.: The Peirce translation and the double negation shift. In: Ferreira, F., Lowe, B., Mayordomo, E., Gomes, L.M. (eds.) CiE 2010. LNCS, vol. 6158, pp. 151–161. Springer, Heidelberg (2010)Google Scholar
  9. 9.
    Escardó, M.H., Oliva, P.: Selection functions, bar recursion, and backward induction. Mathematical Structures in Computer Science 20(2), 127–168 (2010)MATHCrossRefGoogle Scholar
  10. 10.
    Gödel, K.: Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes. Dialectica 12, 280–287 (1958)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Kohlenbach, U.: Higher order reverse mathematics. In: Simpson, S.G. (ed.) Reverse Mathematics 2001, ASL, A.K. Peters. Lecture Notes in Logic, vol. 21, pp. 281–295 (2005)Google Scholar
  12. 12.
    Kohlenbach, U.: Applied Proof Theory: Proof Interpretations and their Use in Mathematics. In: Monographs in Mathematics. Springer, Heidelberg (2008)Google Scholar
  13. 13.
    Normann, D.: The continuous functionals. In: Griffor, E.R. (ed.) Handbook of Computability Theory, ch. 8, pp. 251–275. North Holland, Amsterdam (1999)CrossRefGoogle Scholar
  14. 14.
    Spector, C.: Provably recursive functionals of analysis: a consistency proof of analysis by an extension of principles in current intuitionistic mathematics. In: Dekker, F.D.E. (ed.) Recursive Function Theory: Proc. Symposia in Pure Mathematics, vol. 5, pp. 1–27. American Mathematical Society, Providence (1962)Google Scholar
  15. 15.
    Troelstra, A.S.: Metamathematical Investigation of Intuitionistic Arithmetic and Analysis. LNM, vol. 344. Springer, Berlin (1973)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Martín Escardó
    • 1
  • Paulo Oliva
    • 2
  1. 1.University of Birmingham 
  2. 2.Queen Mary University of London 

Personalised recommendations