Computational Interpretations of Analysis via Products of Selection Functions

  • Martín Escardó
  • Paulo Oliva
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6158)


We show that the computational interpretation of full comprehension via two well-known functional interpretations (dialectica and modified realizability) corresponds to two closely related infinite products of selection functions.


  1. 1.
    Avigad, J., Feferman, S.: Gödel’s functional (“Dialectica”) interpretation. In: Buss, S.R. (ed.) Handbook of proof theory. Studies in Logic and the Foundations of Mathematics, vol. 137, pp. 337–405. North Holland, Amsterdam (1998)CrossRefGoogle Scholar
  2. 2.
    Berardi, S., Bezem, M., Coquand, T.: On the computational content of the axiom of choice. The Journal of Symbolic Logic 63(2), 600–622 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Berger, U., Oliva, P.: Modified bar recursion and classical dependent choice. Lecture Notes in Logic 20, 89–107 (2005)MathSciNetGoogle Scholar
  4. 4.
    Berger, U., Oliva, P.: Modified bar recursion. Mathematical Structures in Computer Science 16, 163–183 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Berger, U., Schwichtenberg, H.: Program extraction from classical proofs. In: Leivant, D. (ed.) LCC 1994. LNCS, vol. 960, pp. 77–97. Springer, Heidelberg (1995)Google Scholar
  6. 6.
    Bezem, M.: Strongly majorizable functionals of finite type: a model for bar recursion containing discontinuous functionals. The Journal of Symbolic Logic 50, 652–660 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Escardó, M.H.: Infinite sets that admit fast exhaustive search. In: Proceedings of LICS, pp. 443–452 (2007)Google Scholar
  8. 8.
    Escardó, M.H., Oliva, P.: The Peirce translation and the double negation shift. In: Ferreira, F., Lowe, B., Mayordomo, E., Gomes, L.M. (eds.) CiE 2010. LNCS, vol. 6158, pp. 151–161. Springer, Heidelberg (2010)Google Scholar
  9. 9.
    Escardó, M.H., Oliva, P.: Selection functions, bar recursion, and backward induction. Mathematical Structures in Computer Science 20(2), 127–168 (2010)zbMATHCrossRefGoogle Scholar
  10. 10.
    Gödel, K.: Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes. Dialectica 12, 280–287 (1958)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Kohlenbach, U.: Higher order reverse mathematics. In: Simpson, S.G. (ed.) Reverse Mathematics 2001, ASL, A.K. Peters. Lecture Notes in Logic, vol. 21, pp. 281–295 (2005)Google Scholar
  12. 12.
    Kohlenbach, U.: Applied Proof Theory: Proof Interpretations and their Use in Mathematics. In: Monographs in Mathematics. Springer, Heidelberg (2008)Google Scholar
  13. 13.
    Normann, D.: The continuous functionals. In: Griffor, E.R. (ed.) Handbook of Computability Theory, ch. 8, pp. 251–275. North Holland, Amsterdam (1999)CrossRefGoogle Scholar
  14. 14.
    Spector, C.: Provably recursive functionals of analysis: a consistency proof of analysis by an extension of principles in current intuitionistic mathematics. In: Dekker, F.D.E. (ed.) Recursive Function Theory: Proc. Symposia in Pure Mathematics, vol. 5, pp. 1–27. American Mathematical Society, Providence (1962)Google Scholar
  15. 15.
    Troelstra, A.S.: Metamathematical Investigation of Intuitionistic Arithmetic and Analysis. LNM, vol. 344. Springer, Berlin (1973)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Martín Escardó
    • 1
  • Paulo Oliva
    • 2
  1. 1.University of Birmingham 
  2. 2.Queen Mary University of London 

Personalised recommendations