Advertisement

Evolutionary Computation and Trade Execution

  • Wei Cui
  • Anthony Brabazon
  • Michael O’Neill
Part of the Studies in Computational Intelligence book series (SCI, volume 293)

Summary

Although there is a plentiful literature on the use of evolutionary methodologies for the trading of financial assets, little attention has been paid to the issue of efficient trade execution. Trade execution is concerned with the actual mechanics of buying or selling the desired amount of a financial instrument of interest. This chapter introduces the concept of trade execution and outlines the limited prior work applying evolutionary computing methods for this task. Furthermore, we build an Agent-based Artificial Stock Market and apply a Genetic Algorithm to evolve an efficient trade execution strategy. Finally, we suggest a number of opportunities for future research.

Keywords

Limit Order Order Book Limit Price Double Auction Market Impact 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Almgren, R.: Execution costs. In: Encyclopedia of Quantitative Finance. Wiley, Chichester (2008)Google Scholar
  2. 2.
    Almgren, R., Chriss, N.: Optimal execution of portfolio transactions. Journal of Risk 3(2), 5–39 (2000)Google Scholar
  3. 3.
    Berseus, P.: Creating an agent-based artificial market. Master’s thesis, Lunds Tekniska Hogskola (2007)Google Scholar
  4. 4.
    Bikker, J., Spierdijk, L., Sluis, P.: Market impact costs of institutional equity trades. Technical Report 27, Netherlands Central Bank, Research Department (2007)Google Scholar
  5. 5.
    Bonabeau, E.: Agent-based modeling: methods and techniques for simulating human systems. Proceedings of the National Academy of Sciences 93(3), 7280–7287 (2002)CrossRefGoogle Scholar
  6. 6.
    Bouchaud, J., Mezard, M., Potters, M.: Statistical properties of stock order books: empirical results and models. Quantitative Finance 2(4), 251–256 (2002)CrossRefGoogle Scholar
  7. 7.
    Brabazon, A., O’Neil, M.: Biologically Ispired Algorithms for Financial Modeling. Springer, Berlin (2006)Google Scholar
  8. 8.
    Brabazon, A., O’Neill, M., Dempsey, I.: An introduction to evolutionary computation in finance. Computational Intelligence Magazine 10(10), 1–12 (2008)Google Scholar
  9. 9.
    Chan, N., LeBaron, B., Lo, A., Poggio, T.: Agent-based models of financial markets: A comparison with experimental markets. Technical Report 4195-01, Massachusetts Institute of Technology (2001)Google Scholar
  10. 10.
    Chen, S.: Computationally intelligent agents in economics and finance. Information Sciences 177(5), 1153–1168 (2007)CrossRefGoogle Scholar
  11. 11.
    Chiarella, C., Iori, G.: A simulation analysis of the microstructure of double auction markets. Quantitative Finance 2, 246–253 (2002)CrossRefGoogle Scholar
  12. 12.
    Chiarella, C., Iori, G., Perello, J.: The impact of heterogeneous trading rules on the limit order book and order flows. Journal of Economic Dynamics and Control 33(3), 525–537 (2007)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Daniel, G.: Asynchronous simulations of a limit order book. PhD thesis, University of Manchester, U.K (2006)Google Scholar
  14. 14.
    Decovny, S.: Asian-pacific gears up for algorithmic trading. Market View 1, 13 (2008)Google Scholar
  15. 15.
    Engle, R., Ferstenberg, R., Russell, J.: Measuring and modeling execution cost and risk. Technical Report 08-09, Chicago GSB Research Paper (2008)Google Scholar
  16. 16.
    Farmer, J., Gerig, A., Lillo, F., Mike, S.: Market efficiency and the long-memory of supply and demand: Is price impact variable and permanent or fixed and temporary? Quantitative Finance 6(2), 107–112 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  17. 17.
    Farmer, J., Patelli, P., Zovko, I.: Supplementary material for ‘the predictive power of zero intelligence in financial markets’ (2005), http://www.santafe.edu/~jdf/papers/zerosuppl.pdf
  18. 18.
    Gode, D., Sunder, S.: Allocative efficiency of markets with zero-intelligence traders. Journal of political economy 101, 119–137 (1993)CrossRefGoogle Scholar
  19. 19.
    Guo, T.: An agent-based simulation of double-auction markets. Master’s thesis, University of Toronto (2005)Google Scholar
  20. 20.
    Keim, D., Madhavan, A.: The cost of institutional equity trades. Financial Analysts Journal 54(4), 50–52 (1998)CrossRefGoogle Scholar
  21. 21.
    Kim, K.: Electronic and Algorithmic Trading Technology. Academic Press, U.S.A (2007)Google Scholar
  22. 22.
    Kissell, R.: Algorithmic Trading Strategies. PhD thesis, Fordham University (2006)Google Scholar
  23. 23.
    Kissell, R., Malanut, R.: Algorithmic decision-making framework. Journal of Trading 1(1), 12–21 (2006)CrossRefGoogle Scholar
  24. 24.
    LeBaron, B.: Agent-based computational finance: suggested readings and early research. J. Econom. Dynam. Control 24, 679–702 (2000)CrossRefzbMATHGoogle Scholar
  25. 25.
    LeBaron, B.: Agent-based computational finance. In: Tesfatsion, L., Judd, K. (eds.) Handbook of Computational Economics. Agent-based Computational Economics, vol. 2, pp. 134–151. Elsevier, AmsterdamGoogle Scholar
  26. 26.
    LeBaron, B.: A builder’s guide to agent based financial markets. Quantitative Finance 1(2), 254–261 (2001)CrossRefGoogle Scholar
  27. 27.
    Lim, M., Coggins, R.: Price impact of trades on the ASX. Presented at Australasian Finance and Banking Conference (2003)Google Scholar
  28. 28.
    Lim, M., Coggins, R.: The immediate price impact of trades on the australian stock exchange. Quantitative Finance 5(4), 365–377 (2005)CrossRefzbMATHGoogle Scholar
  29. 29.
    Lim, M., Coggins, R.: Optimal trade execution: an evolutionary approach. In: Proc. IEEE Congress on Evolutionary Computation, vol. 2, pp. 1045–1052 (2005)Google Scholar
  30. 30.
    Nevmyvaka, Y., Feng, Y., Kearns, M.: Reinforcement learning for optimized trade execution. In: ICML 2006: Proceedings of the 23rd International Conference on Machine Learning, pp. 673–680. ACM Press, New York (2006)CrossRefGoogle Scholar
  31. 31.
    Raberto, M., Cincotti, S.: Modeling and simulation of a double auction artificial financial market. Physica A: Statistical Mechanics and its applications 355(1), 34–45 (2005)CrossRefMathSciNetGoogle Scholar
  32. 32.
    Samanidou, E., Zschischang, E., Stauffer, D., Lux, T.: Agent-based models of financial markets. Reports on Progress in Physics 70(3), 409–450 (2007)CrossRefGoogle Scholar
  33. 33.
    Swarm. Swarm package can be obtained from http://www.swarm.org
  34. 34.
    Tesfatsion, L.: Agent-based computational economics: A constructive approach to economic theory. In: Tesfatsion, L., Judd, K. (eds.) Handbook of computational economics: agent-based computaional economics, pp. 269–277. Elsevier, North-Holland, Amsterdam (2006)Google Scholar
  35. 35.
    Wang, J., Zhang, C.: Dynamic focus strategies for electronic trade execution in limit order markets. In: CEC-EEE 2006: Proceedings of the 8th IEEE International Conference on E-Commerce Technology and the 3rd IEEE International Conference on Enterprise Computing, E-Commerce, and E-Services, pp. 26–35. IEEE Press, Washington (2006)CrossRefGoogle Scholar
  36. 36.
    Yang, J.: The efficiency of an artificial double auction stock market with neural learning agents. In: Chen, S. (ed.) Evolutionary Computation in Economics and Finance, pp. 85–106. Springer, Berlin (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Wei Cui
    • 1
    • 2
  • Anthony Brabazon
    • 1
    • 2
  • Michael O’Neill
    • 1
    • 3
  1. 1.Natural Computing Research and Applications GroupUniversity College DublinIreland
  2. 2.School of BusinessUniversity College DublinIreland
  3. 3.School of Computer Science and InformaticsUniversity College DublinIreland

Personalised recommendations