Semantic Enriching of Natural Language Texts with Automatic Thematic Role Annotation

  • Sven J. Körner
  • Mathias Landhäußer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6177)

Abstract

This paper proposes an approach which utilizes natural language processing (NLP) and ontology knowledge to automatically denote the implicit semantics of textual requirements. Requirements documents include the syntax of natural language but not the semantics. Semantics are usually interpreted by the human user. In earlier work Gelhausen and Tichy showed that SalEOpen image in new window automatically creates UML domain models from (semantically) annotated textual specifications [1]. This manual annotation process is very time consuming and can only be carried out by annotation experts. We automate semantic annotation so that SalEOpen image in new window can be completely automated. With our approach, the analyst receives the domain model of a requirements specification in a very fast and easy manner. Using these concepts is the first step into farther automation of requirements engineering and software development.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gelhausen, T., Tichy, W.F.: Thematic role based generation of UML models from real world requirements. In: First IEEE International Conference on Semantic Computing (ICSC 2007), Irvine, CA, USA, pp. 282–289. IEEE Computer Society, Los Alamitos (2007)CrossRefGoogle Scholar
  2. 2.
    Miller, J., Mukerji, J.: MDA Guide Version 1.0.1 (June 2003)Google Scholar
  3. 3.
    Mich, L., Franch, M., Inverardi, P.N.: Market research for requirements analysis using linguistic tools, vol. 9, pp. 40–56. Springer, London (February 2004)Google Scholar
  4. 4.
    Körner, S.J., Derre, B., Gelhausen, T., Landhäußer, M.: RECAA – the Requirements Engineering Complete Automation Approach, https://svn.ipd.uni-karlsruhe.de/trac/mx (2010.01.11)
  5. 5.
    Cheng, B.H.C., Atlee, J.M.: Research directions in requirements engineering. In: Proc. Future of Software Engineering FOSE 2007, May 2007, pp. 285–303 (2007)Google Scholar
  6. 6.
    Dawson, L., Swatman, P.A.: The use of object-oriented models in requirements engineering: a field study. In: ICIS, pp. 260–273 (1999)Google Scholar
  7. 7.
    Ryan, K.: The role of natural language in requirements engineering. In: Proceedings of IEEE International Symposium on Requirements Engineering, pp. 240–242. IEEE, Los Alamitos (1993)Google Scholar
  8. 8.
    Moreno, A.M., van de Riet, R.: Justification of the equivalence between linguistic and conceptual patterns for the object model (1997)Google Scholar
  9. 9.
    Juzgado, N.J., Moreno, A.M., López, M.: How to use linguistic instruments for object-oriented analysis, vol. 17 (2000)Google Scholar
  10. 10.
    Harmain, H.M., Gaizauskas, R.J.: CM-Builder: An automated NL-based CASE tool. In: ASE, pp. 45–54 (2000)Google Scholar
  11. 11.
    Gildea, D., Jurafsky, D.: Automatic labeling of semantic roles, vol. 28, pp. 245–288. MIT Press, Cambridge (2002)Google Scholar
  12. 12.
    Montes, A., Pacheco, H., Estrada, H., Pastor, O.: Conceptual model generation from requirements model: A natural language processing approach. In: Kapetanios, E., Sugumaran, V., Spiliopoulou, M. (eds.) NLDB 2008. LNCS, vol. 5039, pp. 325–326. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Hasegawa, R., Kitamura, M., Kaiya, H., Saeki, M.: Extracting conceptual graphs from Japanese documents for software requirements modeling. In: Kirchberg, M., Link, S. (eds.) APCCM. CRPIT, vol. 96, pp. 87–96. Australian Computer Society (2009)Google Scholar
  14. 14.
    Kof, L.: Natural language procesing for requirements engineering: Applicability to large requirements documents. In: Russo, A., Garcez, A., Menzies, T. (eds.) Proceedings of the Workshops, Automated Software Engineering, Linz, Austria (September 2004); In conjunction with the 19th IEEE Internationl Conference on Automated Software EngineeringGoogle Scholar
  15. 15.
    Kof, L.: Natural language processing: Mature enough for requirements documents analysis? In: Montoyo, A., Muńoz, R., Métais, E. (eds.) NLDB 2005. LNCS, vol. 3513, pp. 91–102. Springer, Heidelberg (2005)Google Scholar
  16. 16.
    Fillmore, C.J.: Toward a modern theory of case. In: Reibel, D.A., Schane, S.A. (eds.) Modern Studies in English, pp. 361–375. Prentice-Hall, Englewood Cliffs (1969)Google Scholar
  17. 17.
    Krifka, M.: Thematische Rollen (June 2005)Google Scholar
  18. 18.
    Rauh, G.: Tiefenkasus, thematische Relationen und Thetarollen. Gunter Narr Verlag, Tübingen (1988)Google Scholar
  19. 19.
    Manning, C., Jurafsky, D.: The Stanford Natural Language Processing Group, http://nlp.stanford.edu (2009.11.07)
  20. 20.
    Santorini, B.: Part-of-speech tagging guidelines for the Penn Treebank Project (3rd revision). Technical Report MS-CIS-90-47, University of Pennsylvania Department of Computer and Information Science (1990)Google Scholar
  21. 21.
    de Marneffe, M.C., Manning, C.D.: The Stanford typed dependencies representation. In: COLING Workshop on Cross-framework and Cross-domain Parser Evaluation, pp. 1–8 (2008)Google Scholar
  22. 22.
    Miller, G.A.: WordNet: A lexical database for English, vol. 38, pp. 39–41. ACM Press, New York (1995)Google Scholar
  23. 23.
    Cycorp Inc.: ResearchCyc, http://research.cyc.com/ [checked 2010-02-15]
  24. 24.
    Körner, S.J., Gelhausen, T.: Improving automatic model creation using ontologies. In: Knowledge Systems Institute: Proceedings of the Twentieth International Conference on Software Engineering & Knowledge Engineering, July 2008, pp. 691–696 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Sven J. Körner
    • 1
  • Mathias Landhäußer
    • 1
  1. 1.Karlsruhe Institute of Technology (KIT) 

Personalised recommendations