This paper aims to identify the communication goal(s) of a user’s information-seeking query out of a finite set of within-domain goals in natural language queries. It proposes using Tree-Augmented Naive Bayes networks (TANs) for goal detection. The problem is formulated as N binary decisions, and each is performed by a TAN. Comparative study has been carried out to compare the performance with Naive Bayes, fully-connected TANs, and multi-layer neural networks. Experimental results show that TANs consistently give better results when tested on the ATIS and DARPA Communicator corpora.


Goal detection Tree-Augmented Naive Bayes networks (TANs) natural language query 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Keizer, S., Akker, R., Nijholt, A.: Dialogue act recognition with bayesian networks for Dutch dialogues. In: 3rd SIGdial Workshop on Discourse and Dialogue (2002)Google Scholar
  2. 2.
    Meng, H., Wai, C., Pieraccini, R.: The use of belief networks for mixed-initiative dialog modeling. IEEE Transactions on Speech and Audio Processing 11(6), 757–773 (2003)CrossRefGoogle Scholar
  3. 3.
    Keizer, S., Akker, R.: Dialogue act recognition under uncertainty using Bayesian networks. Natural Language Engineering 13(04), 287–316 (2006)Google Scholar
  4. 4.
    Bellegarda, J., Silverman, K.: Natural language spoken interface control using data-driven semantic inference. IEEE Trans. on Speech and Audio Processing 11(3), 267–277 (2003)CrossRefGoogle Scholar
  5. 5.
    Lagus, K., Kuusisto, J.: Topic identification in natural language dialogues using neural networks. In: 3rd SIGdial Workshop on Discourse and Dialogue (2002)Google Scholar
  6. 6.
    Heckerman, D., Horvitz, E.: Inferring information goals from free-text queries: a Bayesian approach. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence, pp. 230–237 (1998)Google Scholar
  7. 7.
    Meng, H., Siu, K.: Semi-automatic acquisition of domain-specific semantic structures. IEEE Trans. on Knowledge and Data Engineering (2001)Google Scholar
  8. 8.
    Hui, P., Lo, W., Meng, H.: Usage patterns and latent semantic analyses for task goal inference of multimodal user interactions. In: Proceedings of International Conference on Intelligent User Interfaces, IUI (2010)Google Scholar
  9. 9.
    Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Machine Learning 29(2), 131–163 (1997)MATHCrossRefGoogle Scholar
  10. 10.
    Chow, C., Liu, C.: Approximating discrete probability distributions with dependence tree. IEEE Trans. on Information Theory 14, 462–467 (1968)MATHCrossRefGoogle Scholar
  11. 11.
    Sacha, J.: New synthesis of Bayesian network classifiers and interpretation of cardiac SPECT images. PhD thesis, University of Toledo (1999)Google Scholar
  12. 12.
    Heckerman, D., Geiger, D., Chickering, D.: Learning Bayesian networks: the combination of knowledge and statistical data. Machine Learning 20, 197–243 (1995)MATHGoogle Scholar
  13. 13.
    Castillo, E., Gutierrez, J., Hadi, A.: Expert Systems and Probabiistic Network Models. Springer, New York (1996)Google Scholar
  14. 14.
    Press, W., Flannery, B., Teukolsky, S., Vetterling, W.: Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, Cambridge (1992)Google Scholar
  15. 15.
    Heckerman, D.: A tutorial on learning Bayesian networks. Technical Report MSR-TR-95-06 (1995)Google Scholar
  16. 16.
    Huang, C., Darwiche, A.: Inference in belief networks: A procedural guide. International Journal of Approximate Reasoning 15(3), 225–263 (1996)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    MacKay, D.: Probable networks and plausible predictions - a review of practical bayesian methods for supervised neural networks. Network: Computation in Neural Systems 6, 469–505 (1995)MATHCrossRefGoogle Scholar
  18. 18.
    Zell, A., Mache, N., Huebner, R., Schmalzl, M., Sommer, T., Korb, T.: SNNS: Stuttgart Neural Network Simulator, Institute for Parallel and Distributed High Performance Systems. University of Stuttgart, Germany (1998),
  19. 19.
    He, Y., Young, S.: Semantic processing using the hidden vector state model. Computer Speech and Language 19(1), 85–106 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Yulan He
    • 1
  1. 1.Knowledge Media InstituteThe Open UniversityMilton KeynesUK

Personalised recommendations