Abstract

This paper aims to identify the communication goal(s) of a user’s information-seeking query out of a finite set of within-domain goals in natural language queries. It proposes using Tree-Augmented Naive Bayes networks (TANs) for goal detection. The problem is formulated as N binary decisions, and each is performed by a TAN. Comparative study has been carried out to compare the performance with Naive Bayes, fully-connected TANs, and multi-layer neural networks. Experimental results show that TANs consistently give better results when tested on the ATIS and DARPA Communicator corpora.

Keywords

Goal detection Tree-Augmented Naive Bayes networks (TANs) natural language query 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Keizer, S., Akker, R., Nijholt, A.: Dialogue act recognition with bayesian networks for Dutch dialogues. In: 3rd SIGdial Workshop on Discourse and Dialogue (2002)Google Scholar
  2. 2.
    Meng, H., Wai, C., Pieraccini, R.: The use of belief networks for mixed-initiative dialog modeling. IEEE Transactions on Speech and Audio Processing 11(6), 757–773 (2003)CrossRefGoogle Scholar
  3. 3.
    Keizer, S., Akker, R.: Dialogue act recognition under uncertainty using Bayesian networks. Natural Language Engineering 13(04), 287–316 (2006)Google Scholar
  4. 4.
    Bellegarda, J., Silverman, K.: Natural language spoken interface control using data-driven semantic inference. IEEE Trans. on Speech and Audio Processing 11(3), 267–277 (2003)CrossRefGoogle Scholar
  5. 5.
    Lagus, K., Kuusisto, J.: Topic identification in natural language dialogues using neural networks. In: 3rd SIGdial Workshop on Discourse and Dialogue (2002)Google Scholar
  6. 6.
    Heckerman, D., Horvitz, E.: Inferring information goals from free-text queries: a Bayesian approach. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence, pp. 230–237 (1998)Google Scholar
  7. 7.
    Meng, H., Siu, K.: Semi-automatic acquisition of domain-specific semantic structures. IEEE Trans. on Knowledge and Data Engineering (2001)Google Scholar
  8. 8.
    Hui, P., Lo, W., Meng, H.: Usage patterns and latent semantic analyses for task goal inference of multimodal user interactions. In: Proceedings of International Conference on Intelligent User Interfaces, IUI (2010)Google Scholar
  9. 9.
    Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Machine Learning 29(2), 131–163 (1997)MATHCrossRefGoogle Scholar
  10. 10.
    Chow, C., Liu, C.: Approximating discrete probability distributions with dependence tree. IEEE Trans. on Information Theory 14, 462–467 (1968)MATHCrossRefGoogle Scholar
  11. 11.
    Sacha, J.: New synthesis of Bayesian network classifiers and interpretation of cardiac SPECT images. PhD thesis, University of Toledo (1999)Google Scholar
  12. 12.
    Heckerman, D., Geiger, D., Chickering, D.: Learning Bayesian networks: the combination of knowledge and statistical data. Machine Learning 20, 197–243 (1995)MATHGoogle Scholar
  13. 13.
    Castillo, E., Gutierrez, J., Hadi, A.: Expert Systems and Probabiistic Network Models. Springer, New York (1996)Google Scholar
  14. 14.
    Press, W., Flannery, B., Teukolsky, S., Vetterling, W.: Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, Cambridge (1992)Google Scholar
  15. 15.
    Heckerman, D.: A tutorial on learning Bayesian networks. Technical Report MSR-TR-95-06 (1995)Google Scholar
  16. 16.
    Huang, C., Darwiche, A.: Inference in belief networks: A procedural guide. International Journal of Approximate Reasoning 15(3), 225–263 (1996)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    MacKay, D.: Probable networks and plausible predictions - a review of practical bayesian methods for supervised neural networks. Network: Computation in Neural Systems 6, 469–505 (1995)MATHCrossRefGoogle Scholar
  18. 18.
    Zell, A., Mache, N., Huebner, R., Schmalzl, M., Sommer, T., Korb, T.: SNNS: Stuttgart Neural Network Simulator, Institute for Parallel and Distributed High Performance Systems. University of Stuttgart, Germany (1998), http://www-ra.informatik.uni-tuebingen.de/SNNS/
  19. 19.
    He, Y., Young, S.: Semantic processing using the hidden vector state model. Computer Speech and Language 19(1), 85–106 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Yulan He
    • 1
  1. 1.Knowledge Media InstituteThe Open UniversityMilton KeynesUK

Personalised recommendations