Advances in Modelling and Inversion of Seismic Wave Propagation

  • V. Hermann
  • N. D. Pham
  • A. Fichtner
  • S. Kremers
  • Lianjie Huang
  • Paul Johnson
  • Carène Larmat
  • H.-P. Bunge
  • H. Igel
Conference paper

Abstract

We report on progress in modelling and inversion of seismic waveforms. This involves in particular the simulation of wave propagation through Earth models with complex geometries (i.e., internal interfaces or topography) using numerical solutions based on tetrahedral meshes. In addition, efficient solvers in 3-D based on a regular-grid spectral element method allow for the simulation of many Earth models and for the inversion (i.e., for the fit) of observed seismograms using adjoint techniques. We present an application of this approach to the Australian continent. Furthermore results are presented on exploiting ideas from reverse acoustics to estimate finite source properties of large earthquakes and to constrain crustal scattering through modeling joint observations of rotational and translational ground motions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aki, K., Richards, P. G.: Quantitative Seismology: theory and methods, 2nd. University Science Books, California (2002). Google Scholar
  2. 2.
    Baysal, E., Kosloff, D. D., Sherwood, J. W. C.: Reverse time migration. Geophysics 48, 11 (1983). CrossRefGoogle Scholar
  3. 3.
    Bassin, C., Laske, G., Masters, G.: The Current Limits of Resolution for Surfaace Wave Tomography in North America, EOS Trans. AGU 81, F897 (2002). Google Scholar
  4. 4.
    Boore, D. M.: A Note on the Effect of Simple Topography on Seismic SHWaves. Bull. Seism. Soc. Am., 62(1), 275–284 (1972). Google Scholar
  5. 5.
    Carcione, J. M.: The wave equation in generalised coordinates, Geophysics, 59, 1911–1919 (1994). CrossRefGoogle Scholar
  6. 6.
    Dumbser, M., Käser, M.: An arbitrary high order discontinuous Galerkin method for elastic waves on unstructured meshes II: The three-dimensional isotropic case. Geophysical Journal International 167, 319–336 (2006). CrossRefGoogle Scholar
  7. 7.
    Fichtner, A., Igel, H.: Efficient numerical surface wave propagation through the optimization of discrete crustal models - a technique based on non-linear dispersion curve matching (DCM). Geophys. J. Int. 173(2), 519–533 (2008). CrossRefGoogle Scholar
  8. 8.
    Fichtner, A., Kennett, B. L. N., Igel, H., Bunge, H.-P.: Spectral-element simulation and inversion of seismic waves in a spherical section of the Earth. Journal of Numerical Analysis Industrial and Applied Mathematics 4, 11–22 (2009). MATHMathSciNetGoogle Scholar
  9. 9.
    Fichtner, A., Kennett, B. L. N., Igel, H., Bunge, H.-P.: Full seismic waveform tomography for upper-mantle sturcture in the Australasian region using adjoint methods. Geophysical Journal Internatioal, in pess. Google Scholar
  10. 10.
    Fink, M.: Time reversed acoustics. Phys. Today 50(3), 34–40 (1997). CrossRefMathSciNetGoogle Scholar
  11. 11.
    Igel, H., Cochard, A., Wassermann, J., Flaws, A., Schreiber, U., Velikoseltsev, A., Pham, N. D.: Broadband Observations of Earthquake Induced Rotational Ground Motions, Geophys. J. Int. 168, 182–196 (2007). CrossRefGoogle Scholar
  12. 12.
    Klimeš, L.: Correlation Functions of Random Media, Pure Appl. Geophys., 159, 1811–1831 (2002). CrossRefGoogle Scholar
  13. 13.
    Komatitsch, D., and J. P. Vilotte: The spectral-element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures, Bull. Seism. Soc. Am., 88, 368–392 (1998). Google Scholar
  14. 14.
    Komatitsch, D., Tromp, J.: Spectral-element simulations of global seismic wave propagation- I. Validation. Geophysical Journal International 149, 390–412 (2002). CrossRefGoogle Scholar
  15. 15.
    Kraft, T., Wassermann, J., and Igel, H.: High-precision relocation and focal mechanism of the 2002 rain-triggered earthquake swarms at Mt. Hochstaufen, SEGermany. Geophys. J. Int., 167(3), 1513–1528 (2006). CrossRefGoogle Scholar
  16. 16.
    Larmat, C., Montagner, J.-P., Fink, M., Capdeville, Y., Tourin, A., Clévédé, E.: Time reversal imaging of seismic sources and application to the great Sumatra earthquake. Geophys. Res. Lett. 33, (2006). Google Scholar
  17. 17.
    Larmat, C., Tromp, J., Liu, Q., Montagner, J.-P.: Time reversal location of glacial earthquakes. J. Geophys. Res. B09314, (2008). Google Scholar
  18. 18.
    Lee, Shiann-Jong, Chan, Yu-Chang, Komatitsch, Dimitri, Huang, Bor-Shouh, and Tromp, Jereon: Effects of Realistic Surface Topography on Seismic Ground Motion in the Yangminshan Region of Taiwan Based Upon the Spectral-Element Method and LIDAR DTM, Bull. Seism. Soc. Am., 99, 681–693 (2009). CrossRefGoogle Scholar
  19. 19.
    Mai, P., Burjanek, J., Delouis, B., Festa, G., Francois-Holden, C., Monelli, D., Uchide, T., Zahradnik, J.: Earthquake Source Inversion Blindtest: Initial Results and Further Developments. AGU Fall Meeting (2007). Google Scholar
  20. 20.
    Moczo, P., J. Kristek, M. Galis, P. Pazak, and M. Balazovjech: The finite-difference and finite-element modeling of seismic wave propagation and earthquake motion, Acta physica slovaca, 57(2), 177–406 (2007). Google Scholar
  21. 21.
    Parvulescu, A. and Clay, C. S.: Stability of Propagated Sound I. Geophys. J. Acoust. Soc. Am. 37, 6 (1965). Google Scholar
  22. 22.
    Pham, N. D., Igel, H., Wassermann, J., Käser, M., de la Puente, J., Schreiber, U.: Observations and Modeling of Rotational Signals in the P Coda: Constraints on Crustal Scattering, Bull. Seismol. Soc. Am. 99(2B), 1315–1332 (2009). CrossRefGoogle Scholar
  23. 23.
    Rietbrock, A., Scherbaum, F.: Acoustic imaging of earthquake sources from the chalfant valley, 1986, aftershock series. Geophys. J. Int. 119, 260–268 (1994). CrossRefGoogle Scholar
  24. 24.
    Somerville, P. G., Smith, N. F., Graves, R. W., Abrahamson, N.: Modification of empirical strong ground motion attenuation relations to include the amplitude and duration effects of rupture directivity. Seism. Res. Lett. 68, 199–222 (1997). Google Scholar
  25. 25.
    Stein, S., Wysession, M.: An Introduction to Seismology, Earthquake, and Earth Structure, Blackwell Publishing, Oxford (2003). Google Scholar
  26. 26.
    Tape, C., Liu, Q., Maggi, A., Tromp, J.: Adjoint tomography of the southern California crust. Science 325, 988–992 (2009). CrossRefGoogle Scholar
  27. 27.
    Tromp, J., Tape, C., Liu, Q.: Seismic tomography, adjoint methods, time reversal and banana-doughnut kernels. Geophys. J. Int. 160, 195–216 (2005). CrossRefGoogle Scholar
  28. 28.
    Virieux, J.: P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method, Geophysics, 51, 889–901 (1986). CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • V. Hermann
    • 1
  • N. D. Pham
    • 1
  • A. Fichtner
    • 1
  • S. Kremers
    • 1
  • Lianjie Huang
    • 2
  • Paul Johnson
    • 2
  • Carène Larmat
    • 2
  • H.-P. Bunge
    • 1
  • H. Igel
    • 1
  1. 1.Department of Earth and Environmental SciencesLudwig-Maximilians-University of MunichMünchenGermany
  2. 2.Geophysics Group, Earth and Environmental Sciences DivisionLos Alamos National Laboratory of the University of CaliforniaLos AlamosUSA

Personalised recommendations