Anonymous Authentication with TLS and DAA

  • Emanuele Cesena
  • Hans Löhr
  • Gianluca Ramunno
  • Ahmad-Reza Sadeghi
  • Davide Vernizzi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6101)

Abstract

Anonymous credential systems provide privacy-preserving authentication solutions for accessing services and resources. In these systems, copying and sharing credentials can be a serious issue. As this cannot be prevented in software alone, these problems form a major obstacle for the use of fully anonymous authentication systems in practice. In this paper, we propose a solution for anonymous authentication that is based on a hardware security module to prevent sharing of credentials. Our protocols are based on the standard protocols Transport Layer Security (TLS) and Direct Anonymous Attestation (DAA). We present a detailed description and a reference implementation of our approach based on a Trusted Platform Module (TPM) as hardware security module. Moreover, we discuss drawbacks and alternatives, and provide a pure software implementation to compare with our TPM-based approach.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ardagna, C., Camenisch, J., Kohlweiss, M., Leenes, R., Neven, G., Priem, B., Samarati, P., Sommer, D., Verdicchio, M.: Exploiting cryptography for privacy-enhanced access control: A result of the PRIME project. Journal of Computer Security 18, 123–160 (2010)Google Scholar
  2. 2.
    Armknecht, F., Gasmi, Y., Sadeghi, A.R., Stewin, P., Unger, M., Ramunno, G., Vernizzi, D.: An efficient implementation of Trusted Channels based on Openssl. In: Proceedings of the 3rd ACM Workshop on Scalable Trusted Computing (STC 2008), pp. 41–50. ACM, New York (2008)CrossRefGoogle Scholar
  3. 3.
    Balfe, S., Lakhani, A.D., Paterson, K.G.: Securing peer-to-peer networks using Trusted Computing. In: Trusted Computing, pp. 271–298. IEEE Press, Los Alamitos (2005)Google Scholar
  4. 4.
    Barić, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature schemes without trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 480–494. Springer, Heidelberg (1997)Google Scholar
  5. 5.
    Bichsel, P., Binding, C., Camenisch, J., Groß, T., Heydt-Benjamin, T., Sommer, D., Zaverucha, G.: Cryptographic protocols of the identity mixer library. Technical Report RZ 3730 (#99740), IBM Research (2009)Google Scholar
  6. 6.
    Bichsel, P., Camenisch, J., Groß, T., Shoup, V.: Anonymous credentials on a standard Java Card. In: Proceedings of the 16th ACM Conference on Computer and Communications Security (CCS 2009). ACM Press, New York (2009)Google Scholar
  7. 7.
    Blake-Wilson, S., Nystrom, M., Hopwood, D., Mikkelsen, J., Wright, T.: Transport Layer Security (TLS) Extensions. RFC 4366 (Proposed Standard), Obsoleted by RFC 5246 (April 2006)Google Scholar
  8. 8.
    Brickell, E., Camenisch, J., Chen, L.: Direct Anonymous Attestation. In: Proceedings of the 11th ACM Conference on Computer and Communications Security (CCS 2004), pp. 132–145. ACM Press, New York (2004)CrossRefGoogle Scholar
  9. 9.
    Brickell, E., Chen, L., Li, J.: Simplified security notions of Direct Anonymous Attestation and a concrete scheme from pairings. International Journal of Information Security 8(5), 315–330 (2009)CrossRefGoogle Scholar
  10. 10.
    Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anonymous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 56–72. Springer, Heidelberg (2004)Google Scholar
  12. 12.
    Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms. Commun. ACM 24(2), 84–88 (1981)CrossRefGoogle Scholar
  13. 13.
    Chaum, D.: Security without identification: Transaction systems to make big brother obsolete. ACM Commun. 28(10), 1030–1044 (1985)CrossRefGoogle Scholar
  14. 14.
    Chen, L.: A DAA scheme requiring less TPM resources. In: Proceedings of the 5th China International Conference on Information Security and Cryptology, Inscrypt 2009 (2010); Also available at Cryptology ePrint Archive, Report 2010/008Google Scholar
  15. 15.
    Chen, L., Morrissey, P., Smart, N.: Pairings in Trusted Computing. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 1–17. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.2. RFC 5246 (Proposed Standard) (August 2008)Google Scholar
  17. 17.
    Gajek, S., Manulis, M., Pereira, O., Sadeghi, A.R., Schwenk, J.: Universally composable security analysis of TLS. In: Baek, J., Bao, F., Chen, K., Lai, X. (eds.) ProvSec 2008. LNCS, vol. 5324, pp. 313–327. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Goldman, K., Perez, R., Sailer, R.: Linking remote attestation to secure tunnel endpoints. In: Proceedings of the first ACM workshop on Scalable Trusted Computing (STC 2006), pp. 21–24. ACM, New York (2006)CrossRefGoogle Scholar
  19. 19.
    Goldschlag, D.M., Reed, M.G., Syverson, P.F.: Onion routing. ACM Commun. 42(2), 39–41 (1999)CrossRefGoogle Scholar
  20. 20.
    Leung, A., Mitchell, C.J.: Ninja: Non identity based, privacy preserving authentication for ubiquitous environments. In: Krumm, J., Abowd, G.D., Seneviratne, A., Strang, T. (eds.) UbiComp 2007. LNCS, vol. 4717, pp. 73–90. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  21. 21.
    Lindell, A.Y.: Anonymous authentication. Aladdin Knowledge Systems Inc. (2006), http://www.aladdin.com/blog/pdf/AnonymousAuthentication.pdf
  22. 22.
    Nguyen, L., Safavi-Naini, R.: Dynamic k-times anonymous authentication. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 318–333. Springer, Heidelberg (2005)Google Scholar
  23. 23.
    Reiter, M.K., Rubin, A.D.: Crowds: Anonymity for web transactions. ACM Trans. Inf. Syst. Secur. 1(1), 66–92 (1998)CrossRefGoogle Scholar
  24. 24.
    Robertson, J.: Supergeek pulls off ‘near impossible’ crypto chip hack. News article at NZ Herald (February 2010), http://www.nzherald.co.nz/technology/news/article.cfm?c_id=5&objectid=10625082&pnum=0
  25. 25.
    Santesson, S.: TLS Handshake Message for Supplemental Data. RFC 4680 (Proposed Standard) (October 2006)Google Scholar
  26. 26.
    Schechter, S., Parnell, T., Hartemink, A.: Anonymous authentication of membership in dynamic groups. In: Franklin, M.K. (ed.) FC 1999. LNCS, vol. 1648, pp. 184–195. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  27. 27.
    Smyth, B., Ryan, M., Chen, L.: Direct Anonymous Attestation (DAA): Ensuring privacy with corrupt administrators. In: Stajano, F., Meadows, C., Capkun, S., Moore, T. (eds.) ESAS 2007. LNCS, vol. 4572, pp. 218–231. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  28. 28.
    Syverson, P.F., Tsudik, G., Reed, M.G., Landwehr, C.E.: Towards an analysis of onion routing security. In: Federrath, H. (ed.) Designing Privacy Enhancing Technologies. LNCS, vol. 2009, pp. 96–114. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  29. 29.
    Trusted Computing Group: TCG Software Stack Specification Version 1.2, Level 1, Errata AGoogle Scholar
  30. 30.
    Trusted Computing Group: TCG TPM Specification, Version 1.2, Revision 103Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Emanuele Cesena
    • 1
  • Hans Löhr
    • 2
  • Gianluca Ramunno
    • 1
  • Ahmad-Reza Sadeghi
    • 2
  • Davide Vernizzi
    • 1
  1. 1.Dip. di Automatica e InformaticaPolitecnico di TorinoItaly
  2. 2.Horst Görtz Institute for IT SecurityRuhr-University BochumGermany

Personalised recommendations