Negative Difference Resistance and Its Application to Construct Boolean Logic Circuits

  • Maciej Nikodem
  • Marek A. Bawiec
  • Tomasz R. Surmacz
Part of the Communications in Computer and Information Science book series (CCIS, volume 79)


Electronic circuits based on nanodevices and quantum effect are the future of logic circuits design. Today’s technology allows constructing resonant tunneling diodes, quantum cellular automata and nanowires/nanoribbons that are the elementary components of threshold gates. However, synthesizing a threshold circuit for an arbitrary logic function is still a challenging task where no efficient algorithms exist. This paper focuses on Generalised Threshold Gates (GTG), giving the overview of threshold circuit synthesis methods and presenting an algorithm that considerably simplifies the task in case of GTG circuits.


Generalised Threshold Gate NDR gate synthesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    ITRS: Process integration, devices and structures. In: Report on international technology roadmap for semiconductors, 2009 edition. International Technology Roadmap for Semiconductors (2009)Google Scholar
  2. 2.
    ITRS: Emerging research devices. In: Report on international technology roadmap for semiconductors, 2009 edition. International Technology Roadmap for Semiconductors (2009)Google Scholar
  3. 3.
    Wu, C.Y., Lai, K.N.: Integrated Λ-type differential negative resistance MOSFET device. IEEE Journal of Solid-State Circuits 14(6), 1094–1101 (1979)CrossRefGoogle Scholar
  4. 4.
    Guo, W.L., Wang, W., Niu, P.J., Li, X., Yu, X., Mao, L., Liu, H., Yang, G., Song, R.: CMOS-NDR transistor. In: 9th International Conference on Solid-State and Integrated-Circuit Technology, ICSICT 2008, October 2008, pp. 92–95 (2008)Google Scholar
  5. 5.
    Kwang-Jow, G., Cher-Shiung, T., Dong-Shong, L.: Design and characterization of the negative differential resistance circuits using the CMOS and BiCMOS process. Analog Integrated Circuits and Signal Processing 62(1), 63–68 (2010)CrossRefGoogle Scholar
  6. 6.
    Siu, K.Y., Roychowdhury, V.P., Kailath, T.: Depth-Size Tradeoffs for Neural Computation. IEEE Trans. Comput. 40(12), 1402–1412 (1991)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Avedillo, M.J., Quintana, J.M.: A Threshold Logic Synthesis Tool for RTD Circuits. In: DSD 2004: Proceedings of the Digital System Design, EUROMICRO Systems, pp. 624–627 (2004)Google Scholar
  8. 8.
    Zhang, R., Gupta, P., Zhong, L., Jha, N.K.: Synthesis and Optimization of Threshold Logic Networks with Application to Nanotechnologies. In: DATE 2004: Proceedings of the conference on Design, automation and test in Europe, p. 20904. IEEE Computer Society, Washington (2004)Google Scholar
  9. 9.
    Wang, Z.F., Zheng, H., Shi, Q.W., Chen, J.: Emerging nanodevice paradigm: Graphene-based electronics for nanoscale computing. J. Emerg. Technol. Comput. Syst. 5(1), 1–19 (2009)Google Scholar
  10. 10.
    Avedillo, M.J., Quintana, J.M., Pettenghi, H.: Logic Models Supporting the Design of MOBILE-based RTD Circuits. In: ASAP 2005: Proceedings of the 2005 IEEE International Conference on Application-Specific Systems, Architecture Processors, pp. 254–259. IEEE Computer Society Press, Washington (2005)Google Scholar
  11. 11.
    Pettenghi, H., Avedillo, M.J., Quintana, J.M.: Using multi-threshold threshold gates in RTD-based logic design: A case study. Microelectron J. 39(2), 241–247 (2008)Google Scholar
  12. 12.
    Berezowski, K.S.: Compact binary logic circuits design using negative differential resistance devices. IET Electr. Lett. 42(16), 902–903 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Maciej Nikodem
    • 1
  • Marek A. Bawiec
    • 1
  • Tomasz R. Surmacz
    • 1
  1. 1.Institute of Computers, Control and RoboticsWroclaw University of TechnologyWrocław

Personalised recommendations