On Authentication Method Impact upon Data Sampling Delay in Wireless Sensor Networks

  • Pawel Szalachowski
  • Bogdan Ksiezopolski
  • Zbigniew Kotulski
Part of the Communications in Computer and Information Science book series (CCIS, volume 79)


Traffic in Wireless Sensor Network (WSN) consists of short packets sent by nodes that are usually identical in respect of software applied and their hardware architecture. In such a communication environment it is important to guarantee authentication of the nodes. The most popular way to achieve this basic security service is using Message Authentication Code (MAC). The sensor node’s harbware is very limited so the cryptography used must be very efficient. In the article we focus on the influence of the authentication method’s performance on delays in data sampling by the sensor nodes. We present efficiency results for MACs generation in the node. We compare the results for approved, standardized and commonly-used schemes: CMAC, GMAC and HMAC based on MD5 and SHA-1. Additionally, we compare the obtained results with the performance of PKC-based authentication method using the ECDSA.


wireless sensor network cryptographic protocols block cipher modes data sampling sensor’s security utilization efficiency 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Douceur, J., Donath, J.S.: The sybil attack, pp. 251–260 (2002)Google Scholar
  2. 2.
    Karlof, C., Wagner, D.: Secure routing in wireless sensor networks: Attacks and countermeasures. In: First IEEE International Workshop on Sensor Network Protocols and Applications, pp. 113–127 (2002)Google Scholar
  3. 3.
    Sohrabi, K., Gao, J., Ailawadhi, V., Pottie, G.J.: Protocols for self-organization of a wireless sensor network. IEEE Personal Communications 7, 16–27 (2000)CrossRefGoogle Scholar
  4. 4.
    Perrig, A., Szewczyk, R., Tygar, J.D., Wen, V., Culler, D.E.: Spins: security protocols for sensor networks. Wirel. Netw. 8(5), 521–534 (2002)MATHCrossRefGoogle Scholar
  5. 5.
    Karlof, C., Sastry, N., Wagner, D.: Tinysec: a link layer security architecture for wireless sensor networks. In: SenSys 2004: Proceedings of the 2nd international conference on Embedded networked sensor systems, pp. 162–175. ACM, New York (2004)CrossRefGoogle Scholar
  6. 6.
    Xiao, Y., Rayi, V.K., Sun, B., Du, X., Hu, F., Galloway, M.: A survey of key management schemes in wireless sensor networks. Comput. Commun. 30(11-12), 2314–2341 (2007)CrossRefGoogle Scholar
  7. 7.
    Hankerson, D., Menezes, A.J., Vanstone, S.: Guide to Elliptic Curve Cryptography. Springer, New York (2003)Google Scholar
  8. 8.
    Wander, A.S., Gura, N., Eberle, H., Gupta, V., Shantz, S.C.: Energy analysis of public-key cryptography for wireless sensor networks. In: PERCOM 2005: Proceedings of the Third IEEE International Conference on Pervasive Computing and Communications, Washington, DC, USA, pp. 324–328. IEEE Computer Society, Los Alamitos (2005)Google Scholar
  9. 9.
    Gura, N., Patel, A., Wander, A., Eberle, H., Shantz, S.C.: Comparing elliptic curve cryptography and RSA on 8-bit cPUs. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 119–132. Springer, Heidelberg (2004)Google Scholar
  10. 10.
    Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. ACM Commun. 21(2), 120–126 (1978)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Iris datasheet,
  12. 12.
    Laboratories, R.: Pkcs 6: Extended-certificate syntax standard (1993)Google Scholar
  13. 13.
    Stinson, D.R.: Cryptography: Theory and Practice. CRC Press, Inc., Boca Raton (1995)Google Scholar
  14. 14.
    Lai, X., Rueppel, R.A., Woollven, J.: A fast cryptographic checksum algorithm based on stream ciphers. In: ASIACRYPT 1992: Proceedings of the Workshop on the Theory and Application of Cryptographic Techniques, London, UK, pp. 339–348. Springer, Heidelberg (1993)Google Scholar
  15. 15.
    Lim, S.Y., Pu, C.C., Lim, H.T., Lee, H.J.: Dragon-mac: Securing wireless sensor networks with authenticated encryptionGoogle Scholar
  16. 16.
    Zoltak, B.: Tail-mac: A message authentication scheme for stream ciphers (2004)Google Scholar
  17. 17.
    Black, J., Halevi, S., Krawczyk, H., Krovetz, T., Rogaway, P.: Umac: Fast and secure message authentication (1999)Google Scholar
  18. 18.
  19. 19.
    McGrew, D.A., Viega, J.: The galois/counter mode of operation. gcm (2004)Google Scholar
  20. 20.
    Krawczyk, H., Bellare, M., Canetti, R.: Hmac: keyed-hashing for message authentication. RFC 2104, 1–12 (1997)Google Scholar
  21. 21.
    Rivest, R.: The md5 message-digest algorithm (1992)Google Scholar
  22. 22.
    Eastlake, 3rd, D., Jones, P.: Us secure hash algorithm 1, sha1 (2001)Google Scholar
  23. 23.
    Liu, A., Ning, P.: Tinyecc: A configurable library for elliptic curve cryptography in wireless sensor networks. In: IPSN 2008: Proceedings of the 7th international conference on Information processing in sensor networks, Washington, DC, USA, pp. 245–256. IEEE Computer Society Press, Los Alamitos (2008)CrossRefGoogle Scholar
  24. 24.
    Daemen, J., Rijmen, V.: The Design of Rijndael. Springer, New York (2002)MATHGoogle Scholar
  25. 25.
  26. 26.
    Cao, Q., Abdelzaher, T., Stankovic, J., He, T.: The liteos operating system: Towards unix-like abstractions for wireless sensor networks. In: IPSN 2008: Proceedings of the 7th international conference on Information processing in sensor networks, Washington, DC, USA, pp. 233–244. IEEE Computer Society Press, Los Alamitos (2008)CrossRefGoogle Scholar
  27. 27.
    Research, C.: Sec 2: Recommended elliptic curve domain parameters. Standards for efficient cryptography version 1.0 (2000)Google Scholar
  28. 28.
    Iwata, T., Kurosawa, K.: OMAC: One-key CBC MAC. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 137–161. Springer, Heidelberg (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Pawel Szalachowski
    • 1
  • Bogdan Ksiezopolski
    • 1
  • Zbigniew Kotulski
    • 2
    • 3
  1. 1.Institute of Computer ScienceMaria Curie-Sklodowska UniversityLublinPoland
  2. 2.Institute of Fundamental Technological Research of PASWarsawPoland
  3. 3.Institute of Telecommunications of WUTWarsawPoland

Personalised recommendations