Advertisement

Super-Sbox Cryptanalysis: Improved Attacks for AES-Like Permutations

  • Henri Gilbert
  • Thomas Peyrin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6147)

Abstract

In this paper, we improve the recent rebound and start-from-the-middle attacks on AES-like permutations. Our new cryptanalysis technique uses the fact that one can view two rounds of such permutations as a layer of big Sboxes preceded and followed by simple affine transformations. The big Sboxes encountered in this alternative representation are named Super-Sboxes. We apply this method to two second-round SHA-3 candidates Grøstl and ECHO, and obtain improvements over the previous cryptanalysis results for these two schemes. Moreover, we improve the best distinguisher for the AES block cipher in the known-key setting, reaching 8 rounds for the 128-bit version.

Keywords

hash function cryptanalysis AES Grøstl ECHO 

References

  1. 1.
    Barreto, P.S.L.M.: An observation on Grøstl. Comment submitted to the NIST hash function mailing list, hash-forum@nist.gov, http://www.larc.usp.br/~pbarreto/Grizzly.pdf
  2. 2.
    Benadjila, R., Billet, O., Gilbert, H., Macario-Rat, G., Peyrin, T., Robshaw, M., Seurin, Y.: SHA-3 Proposal: ECHO. Submission to NIST (2008), http://crypto.rd.francetelecom.com/echo/
  3. 3.
    Biryukov, A. (ed.): FSE 2007. LNCS, vol. 4593. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  4. 4.
    Biryukov, A., Khovratovich, D., Nikolic, I.: Distinguisher and Related-Key Attack on the Full AES-256. In: Halevi, S. (ed.) [15], pp. 231–249Google Scholar
  5. 5.
    Biryukov, A., Nikolic, I.: A New Security Analysis of AES-128. In: CRYPTO 2009 rump session (2009), http://rump2009.cr.yp.to/b6f3cb038135799a7ea398f99faf4a55.pdf
  6. 6.
    Black, J.R., Rogaway, P., Shrimpton, T.: Black-Box Analysis of the Block-Cipher-Based Hash-Function Constructions from PGV. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 320–335. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited. J. ACM 51(4), 557 (2004)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Cramer, R. (ed.): EUROCRYPT 2005. LNCS, vol. 3494. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  9. 9.
    Daemen, J., Rijmen, V.: The Design of Rijndael. In: Information Security and Cryptography. Springer, Heidelberg (2002), ISBN 3-540-42580-2Google Scholar
  10. 10.
    Daemen, J., Rijmen, V.: Two-Round AES Differentials. Cryptology ePrint Archive, Report 2006/039 (2006), http://eprint.iacr.org/
  11. 11.
    Daemen, J., Rijmen, V.: Understanding Two-Round Differentials in AES. In: De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 78–94. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Dunkelman, O. (ed.): FSE 2009. LNCS, vol. 5665. Springer, Heidelberg (2009)zbMATHGoogle Scholar
  13. 13.
    Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: Rebound Attacks on the Reduced Grøstl Hash Function. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS. Springer, Heidelberg (to appear, 2010)Google Scholar
  14. 14.
    Gauravaram, P., Knudsen, L.R., Matusiewicz, K., Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: Grøstl – a SHA-3 candidate. Submission to NIST (2008), http://www.groestl.info
  15. 15.
    Halevi, S. (ed.): CRYPTO 2009. LNCS, vol. 5677. Springer, Heidelberg (2009)zbMATHGoogle Scholar
  16. 16.
    Daemen, J., Rijmen, V.: Plateau Characteristics. Information Security, IET 1(1), 11–17 (2007)CrossRefGoogle Scholar
  17. 17.
    Jacobson Jr., M.J., Rijmen, V., Safavi-Naini, R. (eds.): SAC 2009. LNCS, vol. 5867. Springer, Heidelberg (2009)zbMATHGoogle Scholar
  18. 18.
    Kelsey, J.: Some notes on Grøstl. Comment submitted to the NIST hash function mailing list, hash-forum@nist.gov, http://ehash.iaik.tugraz.at/uploads/d/d0/Grostl-comment-april28.pdf
  19. 19.
    Khovratovich, D.: Cryptanalysis of Hash Functions with Structures. In: Jacobson Jr., M.J., et al. (eds.) [17], pp. 108–125Google Scholar
  20. 20.
    Knudsen, L.R., Rechberger, C., Thomsen, S.S.: The Grindahl Hash Functions. In: Biryukov, A. (ed.) [3], pp. 39–57Google Scholar
  21. 21.
    Knudsen, L.R., Rijmen, V.: Known-Key Distinguishers for Some Block Ciphers. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 315–324. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  22. 22.
    Knudsen, L.R.: Truncated and Higher Order Differentials. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995)Google Scholar
  23. 23.
    Lamberger, M., Mendel, F., Rechberger, C., Rijmen, V., Schläffer, M.: Rebound Distinguishers: Results on the Full Whirlpool Compression Function. In: Matsui, M. (ed.) [24], pp. 126–143Google Scholar
  24. 24.
    Matsui, M. (ed.): ASIACRYPT 2009. LNCS, vol. 5912. Springer, Heidelberg (2009)zbMATHGoogle Scholar
  25. 25.
    Matusiewicz, K., Naya-Plasencia, M., Nikolic, I., Sasaki, Y., Schläffer, M.: Rebound Attack on the Full Lane Compression Function. In: Matsui, M. (ed.) [24], pp. 106–125Google Scholar
  26. 26.
    Mendel, F., Peyrin, T., Rechberger, C., Schläffer, M.: Improved Cryptanalysis of the Reduced Grøstl Compression Function, ECHO Permutation and AES Block Cipher. In: Jacobson Jr., M.J., et al. (eds.) [17], pp. 16–35Google Scholar
  27. 27.
    Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The Rebound Attack: Cryptanalysis of Reduced Whirlpool and Grøstl. In: Dunkelman, O. (ed.) [12], pp. 260–276Google Scholar
  28. 28.
    Minier, M., Phan, R.C.-W., Pousse, B.: Distinguishers for Ciphers and Known Key Attack against Rijndael with Large Blocks. In: Preneel, B. (ed.) [33], pp. 60–76Google Scholar
  29. 29.
    National Institute of Standards and Technology. FIPS 180-1: Secure Hash Standard (April 1995), http://csrc.nist.gov
  30. 30.
    National Institute of Standards and Technology. FIPS PUB 197, Advanced Encryption Standard (AES). Federal Information Processing Standards Publication 197, U.S. Department of Commerce (November 2001)Google Scholar
  31. 31.
    National Institute of Standards and Technology. Announcing Request for Candidate Algorithm Nominations for a New Cryptographic Hash Algorithm (SHA-3) Family. Federal Register 27(212), 62212–62220 (2007)Google Scholar
  32. 32.
    Peyrin, T.: Cryptanalysis of Grindahl. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 551–567. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  33. 33.
    Preneel, B. (ed.): AFRICACRYPT 2009. LNCS, vol. 5580. Springer, Heidelberg (2009)zbMATHGoogle Scholar
  34. 34.
    Preneel, B., Govaerts, R., Vandewalle, J.: Hash Functions Based on Block Ciphers: A Synthetic Approach. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 368–378. Springer, Heidelberg (1994)Google Scholar
  35. 35.
    Rivest, R.L.: RFC 1321: The MD5 Message-Digest Algorithm (April 1992), http://www.ietf.org/rfc/rfc1321.txt
  36. 36.
    Shoup, V. (ed.): CRYPTO 2005. LNCS, vol. 3621. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  37. 37.
    Rijmen, V.: Cryptanalysis and design of iterated block ciphers. Ph.D. thesis, KULeuven (1997)Google Scholar
  38. 38.
    Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V. (ed.) [36], pp. 17–36Google Scholar
  39. 39.
    Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer, R. (ed.) [8], pp. 19–35Google Scholar
  40. 40.
    Wu, S., Feng, D., Wu, W.: Cryptanalysis of the LANE Hash Function. In: Jacobson Jr., M.J., et al. (eds.) [17], pp. 126–140Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Henri Gilbert
    • 1
  • Thomas Peyrin
    • 2
  1. 1.Orange LabsFrance
  2. 2.IngenicoFrance

Personalised recommendations