Ideal Downward Refinement in the \(\mathcal{EL}\) Description Logic

  • Jens Lehmann
  • Christoph Haase
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5989)


With the proliferation of the Semantic Web, there has been a rapidly rising interest in description logics, which form the logical foundation of the W3C standard ontology language OWL. While the number of OWL knowledge bases grows, there is an increasing demand for tools assisting knowledge engineers in building up and maintaining their structure. For this purpose, concept learning algorithms based on refinement operators have been investigated. In this paper, we provide an ideal refinement operator for the description logic \(\mathcal{EL}\) and show that it is computationally feasible on large knowledge bases.


Description Logic Inductive Logic Inductive Logic Programming Simulation Relation Tree Pattern Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baader, F., Molitor, R., Tobies, S.: Tractable and decidable fragments of conceptual graphs. In: Tepfenhart, W.M. (ed.) ICCS 1999. LNCS, vol. 1640, pp. 480–493. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  2. 2.
    Baader, F., Sertkaya, B., Turhan, A.-Y.: Computing the least common subsumer w.r.t. a background terminology. J. Applied Logic 5(3), 392–420 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Badea, L., Nienhuys-Cheng, S.-H.: A refinement operator for description logics. In: Cussens, J., Frisch, A. (eds.) ILP 2000. LNCS (LNAI), vol. 1866, pp. 40–59. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Bodenreider, O., Smith, B., Kumar, A., Burgun, A.: Investigating subsumption in SNOMED CT: An exploration into large description logic-based biomedical terminologies. Artificial Intelligence in Medicine 39(3), 183–195 (2007)CrossRefGoogle Scholar
  5. 5.
    Buitelaar, P., Cimiano, P., Magnini, B. (eds.): Ontology Learning from Text: Methods, Evaluation and Applications. Frontiers in Artificial Intelligence, vol. 123. IOS Press, Amsterdam (2007)Google Scholar
  6. 6.
    Esposito, F., Fanizzi, N., Iannone, L., Palmisano, I., Semeraro, G.: Knowledge-intensive induction of terminologies from metadata. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 441–455. Springer, Heidelberg (2004)Google Scholar
  7. 7.
    Fanizzi, N., Ferilli, S., Iannone, L., Palmisano, I., Semeraro, G.: Downward refinement in the ALN description logic. In: HIS, pp. 68–73. IEEE Computer Society, Los Alamitos (2004)Google Scholar
  8. 8.
    Fanizzi, N., Ferilli, S., Di Mauro, N., Altomare Basile, T.M.: Spaces of theories with ideal refinement operators. In: Gottlob, G., Walsh, T. (eds.) Proc. of 18th Int. Joint Conf. on Artificial Intelligence, pp. 527–532. Morgan Kaufmann, San Francisco (2003)Google Scholar
  9. 9.
    Iannone, L., Palmisano, I., Fanizzi, N.: An algorithm based on counterfactuals for concept learning in the semantic web. Applied Intelligence 26(2), 139–159 (2007)CrossRefGoogle Scholar
  10. 10.
    Küsters, R.: Non-standard inferences in description logics. Springer, New York (2001)zbMATHCrossRefGoogle Scholar
  11. 11.
    Lehmann, J.: Hybrid learning of ontology classes. In: Perner, P. (ed.) MLDM 2007. LNCS (LNAI), vol. 4571, pp. 883–898. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Lehmann, J., Hitzler, P.: Foundations of refinement operators for description logics. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS (LNAI), vol. 4894, pp. 161–174. Springer, Heidelberg (2008) (Best Student Paper)CrossRefGoogle Scholar
  13. 13.
    Lehmann, J., Hitzler, P.: A refinement operator based learning algorithm for the ALC description logic. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS (LNAI), vol. 4894, pp. 147–160. Springer, Heidelberg (2008) (Best Student Paper)CrossRefGoogle Scholar
  14. 14.
    Lisi, F.A., Malerba, D.: Ideal refinement of descriptions in AL-log. In: Horváth, T., Yamamoto, A. (eds.) ILP 2003. LNCS (LNAI), vol. 2835, pp. 215–232. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Nienhuys-Cheng, S.-H., de Wolf, R. (eds.): Foundations of Inductive Logic Programming. LNCS, vol. 1228. Springer, Heidelberg (1997)Google Scholar
  16. 16.
    Ramanan, P.: Efficient algorithms for minimizing tree pattern queries. In: SIGMOD 2002: Proc. of the 2002 ACM SIGMOD Int. Conf. on Management of data, pp. 299–309. ACM, New York (2002)CrossRefGoogle Scholar
  17. 17.
    Shapiro, E.Y.: Inductive inference of theories from facts. In: Lassez, J.L., Plotkin, G.D. (eds.) Computational Logic: Essays in Honor of Alan Robinson, pp. 199–255. The MIT Press, Cambridge (1991)Google Scholar
  18. 18.
    The Gene Ontology Consortium. Gene ontology: tool for the unification of biology. Nature Genetics 25(1), 25–29 (May 2000)Google Scholar
  19. 19.
    van der Laag, P.R.J., Nienhuys-Cheng, S.-H.: Existence and nonexistence of complete refinement operators. In: Bergadano, F., De Raedt, L. (eds.) ECML 1994. LNCS (LNAI), vol. 784, pp. 307–322. Springer, Heidelberg (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jens Lehmann
    • 1
  • Christoph Haase
    • 2
  1. 1.Department of Computer ScienceUniversität LeipzigLeipzigGermany
  2. 2.Oxford University Computing LaboratoryOxfordUnited Kingdom

Personalised recommendations