Discovering Rules by Meta-level Abduction

  • Katsumi Inoue
  • Koichi Furukawa
  • Ikuo Kobayashi
  • Hidetomo Nabeshima
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5989)


This paper addresses discovery of unknown relations from incomplete network data by abduction. Given a network information such as causal relations and metabolic pathways, we want to infer missing links and nodes in the network to account for observations. To this end, we introduce a framework of meta-level abduction, which performs abduction in the meta level. This is implemented in SOLAR, an automated deduction system for consequence finding, using a first-order representation for algebraic properties of causality and the full-clausal form of network information and constraints. Meta-level abduction by SOLAR is powerful enough to infer missing rules, missing facts, and unknown causes that involve predicate invention in the form of existentially quantified hypotheses. We also show an application of rule abduction to discover certain physical techniques and related integrity constraints within the subject area of Skill Science.


Integrity Constraint Background Theory Horn Clause Causal Graph Clausal Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Furukawa, K., Kobayashi, I., Inoue, K., Suwa, M.: Discovering knack by abductive reasoning. In: SIG-SKL (Skill Science). Japanese Society for Artificial Intelligence (January 2009) (in Japanese)Google Scholar
  2. 2.
    Inoue, K.: Linear resolution for consequence finding. Artificial Intelligence 56, 301–353 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Inoue, K.: Induction as consequence finding. Machine Learning 55, 109–135 (2004)zbMATHCrossRefGoogle Scholar
  4. 4.
    Inoue, K., Iwanuma, K., Nabeshima, H.: Consequence finding and computing answers with defaults. Journal of Intelligent Information Systems 26, 41–58 (2006)CrossRefGoogle Scholar
  5. 5.
    Inoue, K., Furukawa, K., Kobayashi, I.: Abducing rules with predicate invention. In: 19th International Conference on Inductive Logic Programming (ILP 2009), Leuven, Belgium (July 2009)Google Scholar
  6. 6.
    Inoue, K., Sato, T., Ishihata, M., Kameya, Y., Nabeshima, H.: Evaluating abductive hypotheses using an EM algorithm on BDDs. In: Proceedings of IJCAI 2009, pp. 810–815 (2009)Google Scholar
  7. 7.
    Iwanuma, K., Inoue, K.: Minimal answer computation and SOL. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 245–257. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Iwanuma, K., Inoue, K., Satoh, K.: Completeness of pruning methods for consequence finding procedure SOL. In: Proceedings of the 3rd International Workshop on First-Order Theorem Proving, pp. 89–100 (2000)Google Scholar
  9. 9.
    Kobayashi, I., Furukawa, K.: Modeling physical skill discovery and diagnosis by abduction. Information and Media Technologies 3(2), 385–398 (2008)Google Scholar
  10. 10.
    Kobayashi, I., Furukawa, K.: Hypothesis selection using domain theory in rule abductive support for skills. In: SIG-SKL (Skill Science). Japanese Society for Artificial Intelligence (August 2009) (in Japanese)Google Scholar
  11. 11.
    King, R.D., et al.: Functional genomic hypothesis generation and experimentation by a robot scientist. Nature 427, 247–252 (2004)CrossRefGoogle Scholar
  12. 12.
    King, R.D., et al.: The automation of science. Science 324, 85–89 (2009)CrossRefGoogle Scholar
  13. 13.
    Muggleton, S., Bryant, C.: Theory completion and inverse entailment. In: Cussens, J., Frisch, A.M. (eds.) ILP 2000. LNCS (LNAI), vol. 1866, pp. 130–146. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  14. 14.
    Muggleton, S., Buntine, W.: Machine invention of first-order predicate by inverting resolution. In: Proceedings of the 5th International Workshop on Machine Learning, pp. 339–351. Morgan Kaufmann, San Francisco (1988)Google Scholar
  15. 15.
    Nabeshima, H., Iwanuma, K., Inoue, K.: SOLAR: a consequence finding system for advanced reasoning. In: Cialdea Mayer, M., Pirri, F. (eds.) TABLEAUX 2003. LNCS (LNAI), vol. 2796, pp. 257–263. Springer, Heidelberg (2003)Google Scholar
  16. 16.
    Nabeshima, H., Iwanuma, K., Inoue, K., Ray, O.: SOLAR: an automated deduction system for consequence finding. AI Communications, Special Issue on Practical Aspects of Automated Reasoning (2009) (to appear)Google Scholar
  17. 17.
    Poole, D.: A logical framework for default reasoning. Artificial Intelligence 36, 27–47 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Ray, O., Inoue, K.: A consequence finding approach for full clausal abduction. In: Corruble, V., Takeda, M., Suzuki, E. (eds.) DS 2007. LNCS (LNAI), vol. 4755, pp. 173–184. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    Reiser, P.G.K., King, R.D., Kell, D.B., Muggleton, S.H., Bryant, C.H., Oliver, S.G.: Developing a logical model of yeast metabolism. Electronic Transactions in Artificial Intelligence 5-B2(024), 223–244 (2001)Google Scholar
  20. 20.
    Stickel, M.E.: Upside-down meta-interpretation of the model elimination theorem-proving procedure for deduction and abduction. Journal of Automated Reasoning 13(2), 189–210 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Tamaddoni-Nezhad, A., Chaleil, R., Kakas, A., Muggleton, S.: Application of abductive ILP to learning metabolic network inhibition from temporal data. Machine Learning 65, 209–230 (2006)CrossRefGoogle Scholar
  22. 22.
    Yamamoto, Y., Inoue, K., Doncescu, A.: Integrating abduction and induction in biological inference using CF-Induction. In: Lodhi, H., Muggleton, S. (eds.) Elements of Computational Systems Biology. John Wiley & Sons, Chichester (2009) (to appear)Google Scholar
  23. 23.
    Zupan, B., Demšar, J., Bratko, I., Juvan, P., Halter, J., Kuspa, A., Shaulsky, G.: GenePath: a system for automated construction of genetic networks from mutant data. Bioinformatics 19(3), 383–389 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Katsumi Inoue
    • 1
  • Koichi Furukawa
    • 2
  • Ikuo Kobayashi
    • 2
  • Hidetomo Nabeshima
    • 3
  1. 1.National Institute of InformaticsTokyoJapan
  2. 2.SFC Research InstituteKeio UniversityFujisawaJapan
  3. 3.Division of Medicine and Engineering ScienceUniversity of YamanashiYamanashiJapan

Personalised recommendations