Advertisement

Speeding Up Inference in Statistical Relational Learning by Clustering Similar Query Literals

  • Lilyana Mihalkova
  • Matthew Richardson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5989)

Abstract

Markov logic networks (MLNs) have been successfully applied to several challenging problems by taking a “programming language” approach where a set of formulas is hand-coded and weights are learned from data. Because inference plays an important role in this process, “programming” with an MLN would be significantly facilitated by speeding up inference. We present a new meta-inference algorithm that exploits the repeated structure frequently present in relational domains to speed up existing inference techniques. Our approach first clusters the query literals and then performs full inference for only one representative from each cluster. The clustering step incurs only a one-time up-front cost when weights are learned over a fixed structure.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62, 107–136 (2006)CrossRefGoogle Scholar
  2. 2.
    Poon, H., Domingos, P.: Joint inference in information extraction. In: Proceedings of the Twenty-Second Conference on Artificial Intelligence (AAAI 2007), Vancouver, Canada (2007)Google Scholar
  3. 3.
    Wu, F., Weld, D.: Automatically refining the Wikipedia infobox ontology. In: Proceedings of the Seventeenth International World Wide Web Conference (WWW 2008), Beijing, China (2008)Google Scholar
  4. 4.
    Lowd, D., Domingos, P.: Efficient weight learning for Markov logic networks. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) PKDD 2007. LNCS (LNAI), vol. 4702, pp. 200–211. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Mateo (1988)Google Scholar
  6. 6.
    Singla, P., Domingos, P.: Memory-efficient inference in relational domains. In: Proceedings of the Twenty-First Conference on Artificial Intelligence (AAAI 2006), Boston, MA (2006)Google Scholar
  7. 7.
    Shavlik, J., Natarajan, S.: Speeding up inference in Markov logic networks by preprocessing to reduce the size of the resulting grounded network. In: Proceedings of the Twenty-first International Joint Conference on Artificial Intelligence (IJCAI 2009), Pasadena, CA (2009)Google Scholar
  8. 8.
    Poon, H., Domingos, P.: Sound and efficient inference with probabilistic and deterministic dependencies. In: Proceedings of the Twenty-First Conference on Artificial Intelligence (AAAI 2006), Boston, MA (2006)Google Scholar
  9. 9.
    Frasconi, P., Passerini, A.: Learning with kernels and logical representations. In: De Raedt, L., Frasconi, P., Kersting, K., Muggleton, S.H. (eds.) Probabilistic Inductive Logic Programming. LNCS (LNAI), vol. 4911, pp. 56–91. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Kautz, H., Selman, B., Jiang, Y.: A general stochastic approach to solving problems with hard and soft constraints. In: Gu, D., Du, J., Pardalos, P. (eds.) DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 35, pp. 573–586. American Mathematical Society, Providence (1997)Google Scholar
  11. 11.
    Kok, S., Singla, P., Richardson, M., Domingos, P.: The Alchemy system for statistical relational AI. Technical report, Department of Computer Science and Engineering, University of Washington (2005), http://www.cs.washington.edu/ai/alchemy
  12. 12.
    Mihalkova, L., Mooney, R.J.: Bottom-up learning of Markov logic network structure. In: Proceedings of 24th International Conference on Machine Learning (ICML 2007), Corvallis, OR (2007)Google Scholar
  13. 13.
    Poole, D.: First-order probabilistic inference. In: Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence (IJCAI 2003), Acapulco, Mexico (2003)Google Scholar
  14. 14.
    de Salvo Braz, R., Amir, E., Roth, D.: MPE and partial inversion in lifted probabilistic variable elimination. In: Proceedings of the Twenty-First Conference on Artificial Intelligence (AAAI 2006), Boston, Massachusetts (2006)Google Scholar
  15. 15.
    Milch, B., Zettlemoyer, L.S., Kersting, K., Haimes, M., Kaelbling, L.P.: Lifted probabilistic inference with counting formulas. In: Proceedings of the Twenty-Third Conference on Artificial Intelligence, AAAI 2008 (2008)Google Scholar
  16. 16.
    Sen, P., Deshpande, A., Getoor, L.: Exploiting shared correlations in probabilistic databases. In: Proceedings of the 34th International Conference on Very Large Data Bases (VLDB 2008), Auckland, New Zealand (2008)Google Scholar
  17. 17.
    Sen, P., Deshpande, A., Getoor, L.: Bisimulation-based approximate lifted inference. In: Proceedings of 25th Conference on Uncertainty in Artificial Intelligence, UAI 2009 (2009)Google Scholar
  18. 18.
    Jaimovich, A., Meshi, O., Friedman, N.: Template based inference in symmetric relational Markov random fields. In: Proceedings of 23rd Conference on Uncertainty in Artificial Intelligence (UAI 2007), Vancouver, Canada, pp. 191–199 (2007)Google Scholar
  19. 19.
    Singla, P., Domingos, P.: Lifted first-order belief propagation. In: Proceedings of the Twenty-Third Conference on Artificial Intelligence (AAAI 2008), Chicago, IL (2008)Google Scholar
  20. 20.
    de Salvo Braz, R., Natarajan, S., Bui, H., Shavlik, J., Russell, S.: Anytime lifted belief propagation. In: International Workshop on Statistical Relational Learning (SRL 2009), Leuven, Belgium (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Lilyana Mihalkova
    • 1
  • Matthew Richardson
    • 2
  1. 1.Department of Computer SciencesThe University of Texas at AustinAustinUSA
  2. 2.Microsoft ResearchOne Microsoft WayRedmondUSA

Personalised recommendations