A CTL-Based Logic for Program Abstractions

  • Martin Lange
  • Markus Latte
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6188)


We define an action-based extension of the branching-time temporal logic CTL which allows path quantifiers to be restricted by formal languages. The main purpose of this logic is its use in abstract interpretation. A reduction from a concrete system to an abstract one may contain spurious traces which can render the verification of the abstract system useless with respect to the concrete one. We pick up the suggestion to verify a modified property on the abstract system instead of the one that the concrete system is supposed to have. The logic introduced here enables a systematic modification of such properties. We present some ways of such a modification which aim at implicitly excluding spurious traces in the verification of abstracted systems.


Model Check Transition System Temporal Logic Abstract System Tree Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Proc. 36th Ann. ACM Symp. on Theory of Computing, STOC 2004, pp. 202–211 (2004)Google Scholar
  2. 2.
    Bosnacki, D., Ioustinova, N., Sidorova, N.: Using fairness to make abstractions work. In: Graf, S., Mounier, L. (eds.) SPIN 2004. LNCS, vol. 2989, pp. 198–215. Springer, Heidelberg (2004)Google Scholar
  3. 3.
    Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata: Application to model-checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997)Google Scholar
  4. 4.
    Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Proc. Congress on Logic, Method, and Philosophy of Science, pp. 1–12. Stanford University Press, Stanford (1962)Google Scholar
  5. 5.
    Clarke, E.M., Emerson, E.A.: Synthesis of synchronization skeletons for branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981. LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982)CrossRefGoogle Scholar
  6. 6.
    Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement for symbolic model checking. Journal of the ACM 50(5), 752–794 (2003)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Emerson, E.A., Halpern, J.Y.: Decision procedures and expressiveness in the temporal logic of branching time. Journal of Computer and System Sciences 30, 1–24 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Emerson, E.A., Halpern, J.Y.: “sometimes” and “not never” revisited: on branching versus linear time temporal logic. J. ACM 33(1), 151–178 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Emerson, E.A., Jutla, C.S.: The complexity of tree automata and logics of programs. In: Annual IEEE Symposium on Foundations of Computer Science, pp. 328–337 (1988)Google Scholar
  10. 10.
    Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. Journal of Computer and System Sciences 18(2), 194–211 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Löding, C., Lutz, C., Serre, O.: Propositional dynamic logic with recursive programs. J. Log. Algebr. Program. 73(1-2), 51–69 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Löding, C., Serre, O.: Propositional dynamic logic with recursive programs. In: Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS 2006. LNCS, vol. 3921, pp. 292–306. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    De Nicola, R., Vaandrager, F.: Action versus state based logics for transition systems. In: Guessarian, I. (ed.) LITP 1990. LNCS, vol. 469, pp. 407–419. Springer, Heidelberg (1990)Google Scholar
  14. 14.
    Pnueli, A.: The temporal logic of programs. In: Proc. 18th Symp. on Foundations of Computer Science, FOCS 1977, Providence, RI, USA, pp. 46–57. IEEE, Los Alamitos (1977)Google Scholar
  15. 15.
    Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logics. Journal of the Association for Computing Machinery 32(3), 733–749 (1985)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Staiger, L.: Handbook of formal languages. In: ω-languages. Beyond words, vol. 3, pp. 339–387. Springer, Heidelberg (1997)Google Scholar
  17. 17.
    Streett, R.S.: Propositional dynamic logic of looping and converse is elementarily decidable. Information and Control 54(1/2), 121–141 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Vardi, M.Y., Wolper, P.: Automata-theoretic techniques for modal logics of programs. J. Comput. Syst. Sci. 32(2), 183–221 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Walukiewicz, I.: Pushdown processes: Games and model-checking. Information and Computation 164(2), 234–263 (2001)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Martin Lange
    • 1
  • Markus Latte
    • 2
  1. 1.Dept. of Elect. Eng. and Computer ScienceUniversity of KasselGermany
  2. 2.Dept. of Computer ScienceLudwig-Maximilians-University MunichGermany

Personalised recommendations