Reduction of the Intruder Deduction Problem into Equational Elementary Deduction for Electronic Purse Protocols with Blind Signatures

  • Daniele Nantes Sobrinho
  • Mauricio Ayala-Rincón
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6188)


The intruder deduction problem for an electronic purse protocol with blind signatures is considered. The algebraic properties of the protocol are modeled by an equational theory implemented as a convergent rewriting system which involves rules for addition, multiplication and exponentiation. The whole deductive power of the intruder is modeled as a sequent calculus that, modulo this rewriting system, deals with blind signatures. It is proved that the associative-commutative (AC) equality of the algebraic theory can be decided in polynomial time, provided a strategy to avoid distributivity law between the AC operators is adopted. Moreover, it is also shown that the intruder deduction problem can be reduced in polynomial time to the elementary deduction problem for this equational theory.


Equational Theory Algebraic Property Blind Signature Sequent Calculus Cryptographic Protocol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abadi, M., Cortier, V.: Deciding knowledge in security protocols under equational theories. Theoretical Computer Science 367(1-2), 2–32 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)Google Scholar
  3. 3.
    Bernat, V., Comon-Lundh, H.: Normal proofs in intruder theories. In: Okada, M., Satoh, I. (eds.) ASIAN 2006. LNCS, vol. 4435, pp. 151–166. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Bezem, M., Klop, J.W., de Vrijer, R. (eds.): Term Rewriting Systems by TeReSe. Cambridge Tracts in Theoretical Computer Science, vol. 55. Cambridge University Press, Cambridge (2003)Google Scholar
  5. 5.
    Bull, J., Otwary, D.J.: The authetication protocol. Technical Report CIS3/PROJ/CORBA/SC/1/CSM/436-04/03, Defense Research Agency (1997)Google Scholar
  6. 6.
    Bursuc, B., Comon-Lundh, H., Delaune, S.: In: Comon-Lundh, H., Kirchner, C., Kirchner, H. (eds.) Jouannaud Festschrift. LNCS, vol. 4600, pp. 196–212. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Cortier, V., Delaune, S., Lafourcade, P.: A survey of algebraic properties used in cryptographic protocols. Journal of Computer Security 14(1), 1–43 (2006)Google Scholar
  8. 8.
    Delaune, S.: Vérification des protocoles cryptographiques et propriétés algébriques. PhD thesis, École Normale Supérieure de Cachan (2006)Google Scholar
  9. 9.
    Kapur, D., Narendran, P., Wang, L.: An E-unification algorithm for analyzing protocols that use modular exponentiation. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 165–179. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    McAllester, D.: Automatic recognition of tractability in inference relations. Journal of the ACM 40, 284–303 (1990)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Schneier, B.: Applied Cryptography. John Wiley & Sons, Inc., Chichester (1996)Google Scholar
  12. 12.
    Tiu, A., Rajeev, G.: A proof theoretic analysis of intruder theories. In: Treinen, R. (ed.) RTA 2009. LNCS, vol. 5595, pp. 103–117. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Daniele Nantes Sobrinho
    • 1
  • Mauricio Ayala-Rincón
    • 1
    • 2
  1. 1.Grupo de Teoria da Computação, Departamentos de Matemática e 
  2. 2.Ciência da Computação, Universidade de Brasília 

Personalised recommendations