Advertisement

On the Efficient Construction of Multislices from Recurrences

  • Romans Kasperovics
  • Michael H. Böhlen
  • Johann Gamper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6187)

Abstract

Recurrences are defined as sets of time instants associated with events and they are present in many application domains, including public transport schedules and personal calendars. Because of their large size, recurrences are rarely stored explicitly, but some form of compact representation is used. Multislices are a compact representation that is well suited for storage in relational databases. A multislice is a set of time slices where each slice employs a hierarchy of time granularities to compactly represent multiple recurrences.

In this paper we investigate the construction of multislices from recurrences. We define the compression ratio of a multislice, show that different construction strategies produce multislices with different compression ratios, and prove that the construction of minimal multislices, i.e., multislices with a maximal compression ratio, is an NP-hard problem. We propose a scalable algorithm, termed LMerge, for the construction of multislices from recurrences. Experiments with real-world recurrences from public transport schedules confirm the scalability and usefulness of LMerge: the generated multislices are very close to minimal multislices, achieving an average compression ratio of approx. 99%. A comparison with a baseline algorithm that iteratively merges pairs of mergeable slices shows significant improvements of LMerge over the baseline approach.

Keywords

Bipartite Graph Compression Ratio Time Instant Time Slice Compact Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kasperovics, R., Böhlen, M.H., Gamper, J.: Evaluating exceptions on time slices. In: Laender, A.H.F. (ed.) ER 2009. LNCS, vol. 5829, pp. 251–264. Springer, Heidelberg (2009)Google Scholar
  2. 2.
    Ohlbach, H.J.: Periodic temporal notions as ‘tree partitionings’. Forschungsbericht/Research Report PMS-FB-2006-11, Institute for Informatics, University of Munich (2006)Google Scholar
  3. 3.
    Dawson, F., Stenerson, D.: Internet calendaring and scheduling core object specification, iCalendar (1998)Google Scholar
  4. 4.
    Niezette, M., Stévenne, J.M.: An efficient symbolic representation of periodic time. In: Proceedings of the First International Conference on Information and Knowledge Management, pp. 161–168Google Scholar
  5. 5.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York (1979)zbMATHGoogle Scholar
  6. 6.
    Leban, B., McDonald, D.D., Forster, D.R.: A representation for collections of temporal intervals. In: Proceedings of AAAI 1986, August 1986, pp. 367–371 (1986)Google Scholar
  7. 7.
    Terenziani, P.: Symbolic user-defined periodicity in temporal relational databases. IEEE Trans. Knowl. Data Eng. 15(2), 489–509 (2003)CrossRefGoogle Scholar
  8. 8.
    Google Inc.: Google Transit Feed Specification (February 2008)Google Scholar
  9. 9.
    Weber, C., Brauer, D., Kolmorgen, V., Hirschel, M., Provezza, S., Hulsch, T.: Fahrplanbearbeitungssystem FBS – Anleitung. iRFP (September 2006)Google Scholar
  10. 10.
    Cukierman, D.R., Delgrande, J.P.: The SOL theory: A formalization of structured temporal objects and repetition. In: Proceedings of TIME, pp. 28–35 (2004)Google Scholar
  11. 11.
    Anselma, L.: Recursive representation of periodicity and temporal reasoning. In: Proceedings of TIME, pp. 52–59 (2004)Google Scholar
  12. 12.
    Kasperovics, R., Böhlen, M.H.: Querying multi-granular compact representations. In: Li Lee, M., Tan, K.-L., Wuwongse, V. (eds.) DASFAA 2006. LNCS, vol. 3882, pp. 111–124. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Chandra, R., Segev, A., Stonebraker, M.: Implementing calendars and temporal rules in next generation databases. In: Proceedings of ICDE 1994, Washington, DC, USA, pp. 264–273. IEEE Computer Society, Los Alamitos (1994)Google Scholar
  14. 14.
    Ning, P., Wang, X.S., Jajodia, S.: An algebraic representation of calendars. Ann. Math. Artif. Intell. 36(1-2), 5–38 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Behr, T., de Almeida, V.T., Güting, R.H.: Representation of periodic moving objects in databases. In: Proceedings of the 14th International Workshop on Geographic Information Systems (ACM-GIS), pp. 43–50 (2006)Google Scholar
  16. 16.
    Bettini, C., Mascetti, S.: An efficient algorithm for minimizing time granularity periodical representations. In: Proceedings of TIME, pp. 20–25 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Romans Kasperovics
    • 1
  • Michael H. Böhlen
    • 2
  • Johann Gamper
    • 1
  1. 1.Free University of Bozen-BolzanoBolzanoItaly
  2. 2.University of ZürichZürichSwitzerland

Personalised recommendations