BEMC: A Searchable, Compressed Representation for Large Seismic Wavefields

  • Julio López
  • Leonardo Ramírez-Guzmán
  • Jacobo Bielak
  • David O’Hallaron
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6187)

Abstract

State-of-the-art numerical solvers in Earth Sciences produce multi terabyte datasets per execution. Operating on increasingly larger datasets becomes challenging due to insufficient data bandwidth. Queries result in difficult to handle I/O access patterns. BEMC is a new mechanism that allows querying and processing wavefields in the compressed representation.

This approach combines well-known spatial-indexing techniques with novel compressed representations, thus reducing I/O bandwidth requirements. A new compression approach based on boundary integral representations exploits properties of the simulated domain. Frequency domain representation further compresses the data by eliminating temporal redundancy found in wave propagation data.

This representation enables the transformation of a large I/O workload into a massively-parallel CPU-intensive computation. Queries to this representation result in largely sequential I/O accesses. Although, decompression places heavy demands on the CPU, it exhibits parallelism well-suited for many-core processors. We evaluate our approach in the context of data analysis for the Earth Sciences datasets.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramson, N.: Information Theory and Coding. McGraw-Hill, New York (1963)Google Scholar
  2. 2.
    Ahmed, N., Natarajan, T., Rao, K.R.: Discrete cosine transform. Trans. on Computers (TOC) C(23), 90–93 (1974)Google Scholar
  3. 3.
    Akcelik, V., Bielak, J., Biros, G., Ipanomeritakis, I., Fernandez, A., Ghattas, O., Kim, E., López, J., O’Hallaron, D., Tu, T., Urbanic, J.: High resolution forward and inverse earthquake modeling on terascale computers. In: Proc. Supercomputing SC 2003 (2003)Google Scholar
  4. 4.
    Anderson, E., et al.: LAPACK Users’ Guide, 2nd edn. SIAM, Philadelphia (1995)Google Scholar
  5. 5.
    Arfken, G.: Nonhomogeneous Equation–Green’s Function. In: Mathematical Methods for Physicists, 3rd edn., pp. 480–491. Academic Press, London (1985)Google Scholar
  6. 6.
    Babuska, I., Strouboulis, T.: The Finite Element Method and Its Reliability, 1st edn. Oxford University Press, USA (December 2001)Google Scholar
  7. 7.
    Bao, H., et al.: Large-scale simulation of elastic wave propagation in heterogeneous media on parallel computers. Computer Methods in Applied Mechanics and Engineering 152 (1998)Google Scholar
  8. 8.
    Blackford, L., et al.: An updated set of basic linear algebra subprograms (BLAS). ACM Trans. Math. Soft. 28(2), 135–151 (2002)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Bonnet, M.: Boundary Integral Equation Methods for Solids and Fluids, 1st edn. John Wiley & Sons, Chichester (June 1999) ISBN:0-471-97184-7Google Scholar
  10. 10.
    Burrows, M., Wheeler, D.J.: A block-sorting lossless data compression algorithm. Tech. Rep. 124, Digital Equipment Corporation (December 1994)Google Scholar
  11. 11.
    Chiang, Y.J., Farias, R., Silva, C.T., Wei, B.: A unified infrastructure for parallel out-of-core isosurface extraction and volume rendering of unstructured grids. In: Proc. Symp. on Parallel and Large-data Visualization and Graphics, pp. 59–66. IEEE Press, Los Alamitos (2001)CrossRefGoogle Scholar
  12. 12.
    Hoppe, H.: Smooth view-dependent level-of-detail control and its application to terrain rendering. In: Proc. Int. Conf. Visualization, VIS 1998, October 1998, pp. 35–42. IEEE, Los Alamitos (1998)Google Scholar
  13. 13.
    Ibáñez, L., Schroeder, W., Ng, L., Cates, J.: The ITK Software Guide, Kitware, Inc. (November 2005) ISBN: 1930934157Google Scholar
  14. 14.
    Ibarria, L., Lindstrom, P., Rossignac, J., Szymczak, A.: Out-of-core compression and decompression of large n-dimensional scalar fields. In: Proc. Eurographics (2003)Google Scholar
  15. 15.
    Isenburg, M., Lindstrom, P.: Fast and efficient compression of floating-point data. IEEE Transactions on Visualization and Computer Graphics (TOVCG) 12(5), 1245–1250 (2006)CrossRefGoogle Scholar
  16. 16.
    Landau, L.D., Lifshitz, E.M.: Classical Theory of Fields, The Course of Theoretical Physics, 3rd edn., vol. 2. Pergamon, London (1976)Google Scholar
  17. 17.
    Lelewer, D.A., Hirschberg, D.S.: Data compression. ACM Comput. Surveys (CSUR) 19(3), 261–296 (1987), doi:10.1145/45072.45074MATHCrossRefGoogle Scholar
  18. 18.
    Lindstrom, P.: Out-of-core construction and visualization of multiresolution surfaces. In: Proceedings of the 2003 ACM Interactive 3D Graphics Conference (2003)Google Scholar
  19. 19.
    López, J.: Methods for Querying Compressed Wavefields. Ph.D. thesis, Department of Electrical and Computer Engineering, Carnegie Mellon University (May 2007)Google Scholar
  20. 20.
    (MPEG), I.J.M.P.E.G.: ISO/IEC-11172 MPEG-1 standard, Coding of Moving Pictures and Audio. International Organisation For Standardisation (ISO), 1st edn. (1996)Google Scholar
  21. 21.
    Olsen, K.: Three-dimensional ground motion simulations for large earthquakes on the san andreas fault with dynamic and observational constraints. Comp. Acoust. 9(3), 1203–1215 (2001)MathSciNetGoogle Scholar
  22. 22.
    Press, W.H., Teukolsky, S.A., (Contributor), W.T.V.: Numerical Recipes in C: The Art of Scientific Computing, p. 1020. Cambridge University Press, Cambridge (1992)Google Scholar
  23. 23.
    Ratanaworabhan, P., Ke, J., Burtscher, M.: Fast lossless compression of scientific floating-point data. In: Proc. Data Compression Conference (DCC), March 2006, pp. 133–142 (2006)Google Scholar
  24. 24.
    Sanchez-Sesma, F.J., Luzon, F.: Seismic response of three-dimensional alluvial valleys for incident p, s, and rayleigh waves. Bulletin of the Seismological Society of America 85(1), 269–284 (1995)Google Scholar
  25. 25.
    Smith, G.D.: Numerical Solution of Partial Differential Equations: Finite Difference Methods, 3rd edn. Oxford University Press, New York (1985)MATHGoogle Scholar
  26. 26.
    Tu, T., López, J., O’Hallaron, D.: The Etree library: A system for manipulating large octrees on disk. Tech. Rep. CMU-CS-03-174, Carnegie Mellon, Computer Science Dept. (2003)Google Scholar
  27. 27.
    Tu, T., O’Hallaron, D., López, J.: Etree – a database-oriented method for generating large octree meshes. In: Proc. 11th Int. Meshing Roundtable, Ithaca, NY, September 2002, pp. 127–138 (2002)Google Scholar
  28. 28.
    Wallace, G.K.: The JPEG still picture compression standard. Communications of the ACM (CACM) 34(4), 30–44 (1991)CrossRefGoogle Scholar
  29. 29.
    Whaley, R.C., Dongarra, J.: Automatically Tuned Linear Algebra Software (ATLAS). In: Ninth SIAM Conference on Parallel Processing for Scientific Computing (1999)Google Scholar
  30. 30.
    Yang, D., Moriya, T., Liebchen, T.: A lossless audio compression scheme with random access property. In: Proc. Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP 2004), May 2004, vol. 3, pp. 1016–1019. IEEE, Los Alamitos (2004)CrossRefGoogle Scholar
  31. 31.
    Yoo, T.S. (ed.): Insight into Images: Principles and Practice for Segmentation, Registration, and Image Analysis. AK Peters, Ltd., Wellesley (July 2004) ISBN:1568812175Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Julio López
    • 1
  • Leonardo Ramírez-Guzmán
    • 2
  • Jacobo Bielak
    • 2
  • David O’Hallaron
    • 1
  1. 1.Parallel Data LaboratoryCarnegie Mellon University 
  2. 2.Computational Seismology LaboratoryCarnegie Mellon University 

Personalised recommendations