Visual Decision Support for Ensemble Clustering

  • Martin Hahmann
  • Dirk Habich
  • Wolfgang Lehner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6187)

Abstract

The continuing growth of data leads to major challenges for data clustering in scientific data management. Clustering algorithms must handle high data volumes/dimensionality, while users need assistance during their analyses. Ensemble clustering provides robust, high-quality results and eases the algorithm selection and parameterization. Drawbacks of available concepts are the lack of facilities for result adjustment and the missing support for result interpretation. To tackle these issues, we have already published an extended algorithm for ensemble clustering that uses soft clusterings. In this paper, we propose a novel visualization, tightly coupled to this algorithm, that provides assistance for result adjustments and allows the interpretation of clusterings for data sets of arbitrary size.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proc. of KDD (1996)Google Scholar
  2. 2.
    Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. 31(3) (1999)Google Scholar
  3. 3.
    Jain, A., Law, M.: Data clustering: A users dilemma. In: Pal, S.K., Bandyopadhyay, S., Biswas, S. (eds.) PReMI 2005. LNCS, vol. 3776, pp. 1–10. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Zeng, Y., Tang, J., Garcia-Frias, J., Gao, G.R.: An adaptive meta-clustering approach: Combining the information from different clustering results. In: Proc. of CSB (2002)Google Scholar
  5. 5.
    Gionis, A., Mannila, H., Tsaparas, P.: Clustering aggregation. In: Proc. of ICDE (2005)Google Scholar
  6. 6.
    Strehl, A., Ghosh, J.: Cluster ensembles — a knowledge reuse framework for combining multiple partitions. Journal of Machine Learning Research 3 (2002)Google Scholar
  7. 7.
    Hahmann, M., Volk, P., Rosenthal, F., Habich, D., Lehner, W.: How to control clustering results? flexible clustering aggregation. In: Adams, N.M., Robardet, C., Siebes, A., Boulicaut, J.-F. (eds.) IDA 2009. LNCS, vol. 5772, pp. 59–70. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum, New York (1981)MATHGoogle Scholar
  9. 9.
    Shneiderman, B.: The eyes have it: A task by data type taxonomy for information visualizations. In: VL 1996: Proceedings of the 1996 IEEE Symposium on Visual Languages, Washington, DC, USA, p. 336. IEEE Computer Society, Los Alamitos (1996)CrossRefGoogle Scholar
  10. 10.
    Hinneburg, A.: Visualizing clustering results. In: Encyclopedia of Database Systems, pp. 3417–3425 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Martin Hahmann
    • 1
  • Dirk Habich
    • 1
  • Wolfgang Lehner
    • 1
  1. 1.Database Technology GroupDresden University of Technology 

Personalised recommendations