A Bio-inspired Fusion Method for Data Visualization

  • Bruno Baruque
  • Emilio Corchado
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6077)


This research presents a novel bio-inspired fusion algorithm based on the application of a topology preserving map called Visualization Induced SOM (ViSOM) under the umbrella of an ensemble summarization algorithm, the Weighted Voting Superposition (WeVoS). The presented model aims to obtain more accurate and robust maps, also increasing the models stability by means of the use of an ensemble training schema and a posterior fusion algorithm, been those very suitable for visualization and also classification purposes. This model may be applied alone or under the frame of hybrid intelligent systems, when used for instance in the recovery phase of a case based reasoning system. For the sake of completeness, the comparison of the performance with other topology preserving maps and previous fusion algorithms with several public data set obtained from the UCI repository are also included.


Fusion Method Case Base Reasoning Distortion Measure Best Match Unit Topology Preservation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bishop, C.: Neural Networks for Pattern Recognition, Oxford (1995)Google Scholar
  2. 2.
    Deboeck, G., Kohonen, T. (eds.): Visual Explorations in Finance: with Self-Organizing Maps. Springer, Heidelberg (1998)zbMATHGoogle Scholar
  3. 3.
    Kaski, S., Honkela, T., Lagus, K., Kohonen, T.: WEBSOM - self-organizing maps of document collections. Neurocomputing 21(1-3), 101–117 (1998)zbMATHCrossRefGoogle Scholar
  4. 4.
    Kohonen, T., Oja, E., Simula, O., Visa, A., Kangas, J.: Engineering applications of the self-organizing map. In: Proceedings of the IEEE, vol. 84, pp. 1358–1384 (1996)Google Scholar
  5. 5.
    Sharkey, A., Sharkey, N.: Diversity, selection and ensembles of artificial neural nets. In: Third International Conference on Neural Networks and their Applications. IUSPIM, pp. 205–212 (1997)Google Scholar
  6. 6.
    Yin, H.: ViSOM - a novel method for multivariate data projection and structure visualization. IEEE Transactions on Neural Networks 13(1), 237–243 (2002)CrossRefGoogle Scholar
  7. 7.
    Baruque, B., Corchado, E., Mata, A., Corchado, J.M.: A forecasting solution to the oil spill problem based on a hybrid intelligent system. Information Sciences 180(10), 2029–2043 (2010)CrossRefGoogle Scholar
  8. 8.
    Kohonen, T.: Self-Organizing Maps, vol. 30. Springer, Berlin (1995)Google Scholar
  9. 9.
    Kohonen, T., Lehtio, P., Rovamo, J., Hyvarinen, J., Bry, K., Vainio, L.: A principle of neural associative memory. Neuroscience 2(6), 1065–1076 (1977)CrossRefGoogle Scholar
  10. 10.
    Yin, H.: Data visualisation and manifold mapping using the ViSOM. Neural Networks 15(8-9), 1005–1016 (2002)CrossRefGoogle Scholar
  11. 11.
    Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1996)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Sharkey, A., Sharkey, N.: Combining diverse neural nets. Knowledge Engineering Review 12(3), 1–17 (1997)Google Scholar
  13. 13.
    Ruta, D., Gabrys, B.: An overview of classifier fusion methods. Computing and Information Systems 7(1), 1–10 (2000)Google Scholar
  14. 14.
    Georgakis, A., Li, H., Gordan, M.: An ensemble of SOM networks for document organization and retrieval. In: International Conference on Adaptive Knowledge Representation and Reasoning (AKRR 2005), pp. 6–141 (2005)Google Scholar
  15. 15.
    Baruque, B., Corchado, E.: A weighted voting summarization of SOM ensembles. In: Data Mining and Knowledge Discovery (January 2010), doi:10.1007/s10618–009–0160–3Google Scholar
  16. 16.
    Polani, D.: Measures for the organization of self-organizing maps. In: Seiffert, U., Jain, L.C. (eds.) Self-organizing Neural Networks: Recent Advances and Applications. Studies in Fuzziness and Soft Computing, vol. 16, pp. 13–44. Physica-Verlag, Heidelberg (2003)Google Scholar
  17. 17.
    Pozlbauer, G.: Survey and comparison of quality measures for self-organizing maps. In: Paralic, J., Polzlbauer, G., Andreas, R. (eds.) Fifth Workshop on Data Analysis (WDA 2004), pp. 67–82. Elfa Academic Press, London (2004)Google Scholar
  18. 18.
    Asuncion, A., Newman, D.J.: UCI machine learning repository (2007)Google Scholar
  19. 19.
    Vesanto, J., Sulkava, M., Hollmen, J.: On the decomposition of the self-organizing map distortion measure. In: Proceedings of the Workshop on Self-Organizing Maps (WSOM 2003), pp. 11–16 (2003)Google Scholar
  20. 20.
    Kaski, S., Lagus, K.: Comparing Self-Organizing Maps. In: von der Malsburg, C., Vorbrüggen, J.C., von Seelen, W., Sendhoff, B. (eds.) ICANN 1996. LNCS, vol. 1112, pp. 809–814. Springer, Heidelberg (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Bruno Baruque
    • 1
  • Emilio Corchado
    • 2
  1. 1.Department of Civil EngineeringUniversity of BurgosBurgosSpain
  2. 2.Departamento de Informática y AutomáticaUniversity of SalamancaSalamancaSpain

Personalised recommendations