A Comparison of VBM Results by SPM, ICA and LICA

  • Darya Chyzyk
  • Maite Termenon
  • Alexandre Savio
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6077)


Lattice Independent Component Analysis (LICA) approach consists of a detection of independent vectors in the morphological or lattice theoretic sense that are the basis for a linear decomposition of the data. We apply it in this paper to a Voxel Based Morphometry (VBM) study on Alzheimer’s disease (AD) patients extracted from a well known public database. The approach is compared to SPM and Independent Component Analysis results.


Independent Component Analysis Voxel Base Morphometry Lattice Computing Independent Component Analysis Approach Linear Unmixing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
  3. 3.
    Ashburner, J., Friston, K.J.: Voxel-based morphometry: The methods. Neuroimage 11(6), 805–821 (2000)CrossRefGoogle Scholar
  4. 4.
    Busatto, G.F., Garrido, G.E.J., Almeida, O.P., Castro, C.C., Camargo, C.H.P., Cid, C.G., Buchpiguel, C.A., Furuie, S., Bottino, C.M.: A voxel-based morphometry study of temporal lobe gray matter reductions in alzheimer’s disease. Neurobiology of Aging 24(2), 221–231 (2003)CrossRefGoogle Scholar
  5. 5.
    Fotenos, A.F., Snyder, A.Z., Girton, L.E., Morris, J.C., Buckner, R.L.: Normative estimates of cross-sectional and longitudinal brain volume decline in aging and AD. Neurology 64(6), 1032–1039 (2005)Google Scholar
  6. 6.
    Frisoni, G.B., Testa, C., Zorzan, A., Sabattoli, F., Beltramello, A., Soininen, H., Laakso, M.P.: Detection of grey matter loss in mild alzheimer’s disease with voxel based morphometry. Journal of Neurology, Neurosurgery & Psychiatry 73(6), 657–664 (2002)CrossRefGoogle Scholar
  7. 7.
    Graña, M., Torrealdea, F.J.: Hierarchically structured systems. European Journal of Operational Research 25, 20–26 (1986)CrossRefGoogle Scholar
  8. 8.
    Graña, M.: A brief review of lattice computing. In: Proc. WCCI, pp. 1777–1781 (2008)Google Scholar
  9. 9.
    Graña, M., Chyzyk, D., García-Sebastián, M., Hernández, C.: Lattice independent component analysis for FMRI. Information Sciences (in press, 2010)Google Scholar
  10. 10.
    Graña, M., Villaverde, I., Maldonado, J.O., Hernandez, C.: Two lattice computing approaches for the unsupervised segmentation of hyperspectral images. Neurocomputing 72(10-12), 2111–2120 (2009)CrossRefGoogle Scholar
  11. 11.
    Graña, M., Savio, A.M., Garcia-Sebastian, M., Fernandez, E.: A lattice computing approach for on-line FMRI analysis. Image and Vision Computing (in press, 2009)Google Scholar
  12. 12.
    Schmalz, M.S., Ritter, G.X., Urcid, G.: Autonomous single-pass endmember approximation using lattice auto-associative memories. Neurocomputing 72(10-12), 2101–2110 (2009)CrossRefGoogle Scholar
  13. 13.
    Højen-Sørensen, P., Winther, O., Hansen, L.K.: Mean field approaches to independent component analysis. Neural Computation 14, 889–918 (2002)CrossRefGoogle Scholar
  14. 14.
    Kolenda, T., Hansen, L.K., Larsen, J.: Blind detection of independent dynamic components. In: Proc. IEEE ICASSP 2001, vol. 5, pp. 3197–3200 (2001)Google Scholar
  15. 15.
    Schuster, H., Molgedey, L.: Separation of independent signals using time-delayed correlations. Physical Review Letters 72(23), 3634–3637 (1994)CrossRefGoogle Scholar
  16. 16.
    Marcus, D.S., Wang, T.H., Parker, J., Csernansky, J.G., Morris, J.C., Buckner, R.L.: Open access series of imaging studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. Journal of Cognitive Neuroscience 19(9), 1498–1507 (2007)CrossRefGoogle Scholar
  17. 17.
    Scahill, R.I., Schott, J.M., Stevens, J.M., Rossor, M.N., Fox, N.C.: Mapping the evolution of regional atrophy in alzheimer’s disease: Unbiased analysis of fluid-registered serial MRI. Proceedings of the National Academy of Sciences 99(7), 4703 (2002)CrossRefGoogle Scholar
  18. 18.
    Calhoun, T.V.D., Adali, T.: Unmixing FMRI with independent component analysis. IEEE Engineering in Medicine and Biology Magazine 25(2), 79–90 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Darya Chyzyk
    • 1
  • Maite Termenon
    • 1
  • Alexandre Savio
    • 1
  1. 1.Computational Intelligence Group, Dept. CCIAUPV/EHUSan SebastianSpain

Personalised recommendations