Advertisement

Incorporating Temporal Constraints in the Planning Task of a Hybrid Intelligent IDS

  • Álvaro Herrero
  • Martí Navarro
  • Vicente Julián
  • Emilio Corchado
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6077)

Abstract

Accurate and swift responses are crucial to Intrusion Detection Systems (IDSs), especially if automatic abortion mechanisms are running. In keeping with this idea, this work presents an extension of a Hybrid Intelligent IDS characterized by incorporating temporal control to facilitate real-time processing. The hybrid intelligent -IDS has been conceived as a Hybrid Artificial Intelligent System to perform Intrusion Detection in dynamic computer networks. It combines Artificial Neural Networks and Case-based Reasoning within a multiagent system, in order to develop a more efficient computer network security architecture. Although this temporal issue was taken into account in the initial formulation of this hybrid IDS, in this upgraded version, temporal restrictions are imposed in order to perform real/execution time processing. Experimental results are presented which validate the performance of this upgraded version.

Keywords

Multiagent Systems Hybrid Artificial Intelligent Systems Computer Network Security Intrusion Detection Temporal Constraints Time Bounded Deliberative Process 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Spafford, E.H., Zamboni, D.: Intrusion Detection Using Autonomous Agents. Computer Networks: The International Journal of Computer and Telecommunications Networking 34(4), 547–570 (2000)Google Scholar
  2. 2.
    Dasgupta, D., Gonzalez, F., Yallapu, K., Gomez, J., Yarramsettii, R.: CIDS: An Agent-based Intrusion Detection System. Computers & Security 24(5), 387–398 (2005)CrossRefGoogle Scholar
  3. 3.
    Liao, Y.H., Vemuri, V.R.: Use of K-Nearest Neighbor Classifier for Intrusion Detection. Computers & Security 21(5), 439–448 (2002)CrossRefGoogle Scholar
  4. 4.
    Sarasamma, S.T., Zhu, Q.M.A., Huff, J.: Hierarchical Kohonenen Net for Anomaly Detection in Network Security. IEEE Transactions on Systems Man and Cybernetics, Part B 35(2), 302–312 (2005)CrossRefGoogle Scholar
  5. 5.
    Middlemiss, M., Dick, G.: Feature Selection of Intrusion Detection Data Using a Hybrid Genetic Algorithm/KNN Approach. In: Design and Application of Hybrid Intelligent Systems, pp. 519–527. IOS Press, Amsterdam (2003)Google Scholar
  6. 6.
    Kholfi, S., Habib, M., Aljahdali, S.: Best Hybrid Classifiers for Intrusion Detection. Journal of Computational Methods in Science and Engineering 6(2), 299–307 (2006)Google Scholar
  7. 7.
    Dean, T., Boddy, M.: An Analysis of Time-dependent Planning. In: 7th National Conference on Artificial Intelligence, pp. 49–54 (1988)Google Scholar
  8. 8.
    Garvey, A., Lesser, V.: A Survey of Research in Deliberative Real-time Artificial Intelligence. Real-Time Systems 6(3), 317–347 (1994)CrossRefGoogle Scholar
  9. 9.
    Hayes-Roth, B., Washington, R., Ash, D., Collinot, A., Vina, A., Seiver, A.: Guardian: A Prototype Intensive-care Monitoring Agent. Artificial Intelligence in Medicine 4, 165–185 (1992)CrossRefGoogle Scholar
  10. 10.
    Howe, A.E., Hart, D.M., Cohen, P.R.: Addressing Real-time Constraints in the Design of Autonomous Agents. Real-Time Systems 2(1), 81–97 (1990)CrossRefGoogle Scholar
  11. 11.
    Musliner, D.J., Durfee, E.H., Shin, K.G.: CIRCA: A Cooperative Intelligent Real-time Control Architecture. IEEE Transactions on Systems, Man, and Cybernetics 23(6), 1561–1574 (1993)CrossRefGoogle Scholar
  12. 12.
    Herrero, Á., Corchado, E., Sáiz, J.M.: MOVICAB-IDS: Visual Analysis of Network Traffic Data Streams for Intrusion Detection. In: Corchado, E., Yin, H., Botti, V., Fyfe, C. (eds.) IDEAL 2006. LNCS, vol. 4224, pp. 1424–1433. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Herrero, Á., Corchado, E.: Mining Network Traffic Data for Attacks through MOVICAB-IDS. In: Foundations of Computational Intelligence. Studies in Computational Intelligence, vol. 4, pp. 377–394. Springer, Heidelberg (2009)Google Scholar
  14. 14.
    Corchado, E., Herrero, Á.: Neural Visualization of Network Traffic Data for Intrusion Detection. Applied Soft Computing Accepted with changes (2010)Google Scholar
  15. 15.
    Aamodt, A., Plaza, E.: Case-Based Reasoning - Foundational Issues, Methodological Variations, and System Approaches. AI Communications 7(1), 39–59 (1994)Google Scholar
  16. 16.
    Carrascosa, C., Bajo, J., Julián, V., Corchado, J.M., Botti, V.: Hybrid Multi-agent Architecture as a Real-Time Problem-Solving Model. Expert Systems with Applications. An International Journal 34(1), 2–17 (2008)Google Scholar
  17. 17.
    Kopetz, H.: Real-time Systems: Design Principles for Distributed Embedded Applications. Kluwer Academic Publishers, Dordrecht (1997)zbMATHGoogle Scholar
  18. 18.
    Julian, V., Botti, V.: Developing Real-time Multi-agent Systems. Integrated Computer-Aided Engineering 11(2), 135–149 (2004)Google Scholar
  19. 19.
    Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing Multiagent Systems: the Gaia Methodology. ACM Transactions on Software Engineering and Methodology 12(3), 317–370 (2003)CrossRefGoogle Scholar
  20. 20.
    Wooldridge, M., Jennings, N.R., Kinny, D.: The Gaia Methodology for Agent-Oriented Analysis and Design. Autonomous Agents and Multi-Agent Systems 3(3), 285–312 (2000)CrossRefGoogle Scholar
  21. 21.
    Corchado, E., Fyfe, C.: Connectionist Techniques for the Identification and Suppression of Interfering Underlying Factors. International Journal of Pattern Recognition and Artificial Intelligence 17(8), 1447–1466 (2003)CrossRefGoogle Scholar
  22. 22.
    Corchado, J.M., Laza, R.: Constructing Deliberative Agents with Case-Based Reasoning Technology. International Journal of Intelligent Systems 18(12), 1227–1241 (2003)CrossRefGoogle Scholar
  23. 23.
    Pellicer, M.A., Corchado, J.M.: Development of CBR-BDI Agents. International Journal of Computer Science and Applications 2(1), 25–32 (2005)Google Scholar
  24. 24.
    Carrascosa, C., Terrasa, A., García-Fornes, A., Espinosa, A., Botti, V.: A Meta-Reasoning Model for Hard Real-Time Agents. In: Marín, R., Onaindía, E., Bugarín, A., Santos, J. (eds.) CAEPIA 2005. LNCS (LNAI), vol. 4177, pp. 42–51. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  25. 25.
    Surka, D.M., Brito, M.C., Harvey, C.G.: The Real-time ObjectAgent Software Architecture for Distributed Satellite Systems. In: IEEE Aerospace Conference 2001, vol. 6, pp. 2731–2741 (2001)Google Scholar
  26. 26.
    Navarro, M., Heras, S., Julián, V.: Guidelines to Apply CBR in Real-Time Multi-Agent Systems. Journal of Physical Agents 3(3), 39–43 (2009)Google Scholar
  27. 27.
    Bajo, J., Corchado, J., Rodríguez, S.: Intelligent Guidance and Suggestions Using Case-Based Planning. In: Weber, R.O., Richter, M.M. (eds.) ICCBR 2007. LNCS (LNAI), vol. 4626, pp. 389–403. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  28. 28.
    Hammond, K.J.: Case-based Planning: Viewing Planning as a Memory Task. Academic Press Professional, Inc., London (1989)Google Scholar
  29. 29.
    Spalzzi, L.: A Survey on Case-Based Planning. Artificial Intelligence Review 16(1), 3–36 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Álvaro Herrero
    • 1
  • Martí Navarro
    • 2
  • Vicente Julián
    • 2
  • Emilio Corchado
    • 3
  1. 1.Department of Civil EngineeringUniversity of Burgos, SpainBurgosSpain
  2. 2.Departamento de Sistemas Informáticos y ComputaciónUniversidad Politécnica de ValenciaValenciaSpain
  3. 3.Departamento de Informática y AutomáticaUniversity of SalamancaSalamancaSpain

Personalised recommendations