Enhanced Self Organized Dynamic Tree Neural Network
Conference paper
- 711 Downloads
Abstract
Cluster analysis is a technique used in a variety of fields. There are currently various algorithms used for grouping elements that are based on different methods including partitional, hierarchical, density studies, probabilistic, etc. This article will present the ESODTNN neural network, an evolution of the SODTNN network, which facilitates the revision process by merging its operational process with dendrogram techniques, and enables the automatic detection of clusters in an increased number of situations.
Keywords
Clustering SOM hierarchical clustering PAM DendrogramPreview
Unable to display preview. Download preview PDF.
References
- 1.Furao, S., Ogura, T., Hasegawa, O.: An enhanced self-organizing incremental neural network for online unsupervised learning. Neural Networks 20, 893–903 (2007)zbMATHCrossRefGoogle Scholar
- 2.Kohonen, T.: Self-organized formation of topologically correct feature maps. Biological Cybernetics, 59–69 (1982)Google Scholar
- 3.Fritzke, B.: A growing neural gas network learns topologies. In: Tesauro, G., Touretzky, D.S., Leen, T.K. (eds.) Advances in Neural Information Processing Systems, vol. 7, pp. 625–632 (1995)Google Scholar
- 4.Martinetz, T., Schulten, K.: A neural-gas network learns topologies. Artificial Neural Networks 1, 397–402 (1991)Google Scholar
- 5.Shen, F.: An algorithm for incremental unsupervised learning and topology representation. Ph.D. thesis. Tokyo Institute of Technology (2006)Google Scholar
- 6.Saitou, N., Nie, M.: The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. 4, 406–425 (1987)Google Scholar
- 7.Xu, L.: Bayesian Ying–Yang machine, clustering and number of clusters. Pattern Recognition Letters 18(11-13), 1167–1178 (1997)CrossRefGoogle Scholar
- 8.Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster Analysis. Wiley, New York (1990)Google Scholar
- 9.Corchado, J.M., De Paz, J.F., Rodríguez, S., Bajo, J.: Model of experts for decision support in the diagnosis of leukemia patients. Artificial Intelligence in Medicine 46(3), 179–200 (2009)CrossRefGoogle Scholar
- 10.Hartigan, J.A., Wong, M.A.: A K-means clustering algorithm. Applied Statistics 28, 100–108 (1979)zbMATHCrossRefGoogle Scholar
- 11.Campos, R., Ricardo, M.: A fast algorithm for computing minimum routing cost spanning trees 52(17), 3229–3247 (2008)Google Scholar
- 12.Bajo, J., De Paz, J.F., De Paz, Y., Corchado, J.M.: Integrating case-based planning and RPTW neural networks to construct an intelligent environment for health care. Expert Systems with Applications 36(3) (2009)Google Scholar
- 13.Carbó, J., Molina, J.M., Dávila, J.: Fuzzy Referral based Cooperation in Social Networks of Agents. AI Communications 18(1), 1–13 (2005)zbMATHMathSciNetGoogle Scholar
- 14.García, J., Berlanga, A., Molina, J.M., Casar, J.R.: Methods for Operations Planning in Airport Decision Support Systems. Applied Intelligence 22(3), 183–206 (2005)CrossRefGoogle Scholar
- 15.Pavón, J., Arroyo, M., Hassan, S., Sansores, C.: Agent-based modelling and simulation for the analysis of social patterns. Pattern Recognition Letters 29, 1039–1048 (2008)CrossRefGoogle Scholar
- 16.Pavón, J., Gómez, J., Fernández, A., Valencia, J.: Development of intelligent multi-sensor surveillance systems with agents Robotics and Autonomous Systems 55(12), 892–903 (2007)Google Scholar
- 17.Rung-Wei, P., Yuh-Yuan, G., Miin-Shen, Y.: A new clustering approach using data envelopment analysis. European Journal of Operational Research 199(1), 276–284 (2009)zbMATHCrossRefGoogle Scholar
- 18.Kerr, G., Ruskina, H.J., Cranea, M., Doolan, P.: Techniques for clustering gene expression data. Computers in Biology and Medicine 38(3), 283–293 (2008)CrossRefGoogle Scholar
- 19.De Paz, J.F., Rodríguez, S., Bajo, J., Corchado, J.M., López, V.: Self Organized Dynamic Tree Neural Network. In: Cabestany, J., Sandoval, F., Prieto, A., Corchado, J.M. (eds.) IWANN 2009. LNCS, vol. 5517, pp. 221–228. Springer, Heidelberg (2009)CrossRefGoogle Scholar
- 20.Baruque, B., Corchado, E.: A weighted voting summarization of SOM ensembles. Data Mining and Knowledge DiscoveryGoogle Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2010