Adaptive “Anytime” Two-Phase Local Search

  • Jérémie Dubois-Lacoste
  • Manuel López-Ibáñez
  • Thomas Stützle
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6073)

Abstract

Two-Phase Local Search (TPLS) is a general algorithmic framework for multi-objective optimization. TPLS transforms a multi-objective problem into a sequence of single-objective ones by means of weighted sum aggregations. This paper studies different sequences of weights for defining the aggregated problems for the bi-objective case. In particular, we propose two weight setting strategies that show better anytime search characteristics than the original weight setting strategy used in the TPLS algorithm.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Paquete, L., Stützle, T.: Stochastic local search algorithms for multiobjective combinatorial optimization: A review. In: Gonzalez, T.F. (ed.) Handbook of Approximation Algorithms and Metaheuristics, pp. 29-1–29-15. Chapman & Hall/CRC (2007)Google Scholar
  2. 2.
    Paquete, L., Stützle, T.: A two-phase local search for the biobjective traveling salesman problem. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 479–493. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Paquete, L., Stützle, T.: Analysis of components of stochastic local search algorithms for the multiobjective traveling salesman problem and the design of algorithms. Computers & Operations Research 36(9), 2619–2631 (2009)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: Effective hybrid stochastic local search algorithms for biobjective permutation flowshop scheduling. In: Sampels, M. (ed.) HM 2009. LNCS, vol. 5818, pp. 100–114. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Zilberstein, S.: Using anytime algorithms in intelligent systems. AI Magazine 17(3), 73–83 (1996)Google Scholar
  6. 6.
    Aneja, Y.P., Nair, K.P.K.: Bicriteria transportation problem. Management Science 25(1), 73–78 (1979)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Minella, G., Ruiz, R., Ciavotta, M.: A review and evaluation of multiobjective algorithms for the flowshop scheduling problem. INFORMS Journal on Computing 20(3), 451–471 (2008)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Dubois-Lacoste, J.: A study of Pareto and two-phase local search algorithms for biobjective permutation flowshop scheduling. Master’s thesis, IRIDIA, Université Libre de Bruxelles, Brussels, Belgium (2009)Google Scholar
  9. 9.
    Ruiz, R., Stützle, T.: A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem. European Journal of Operational Research 177(3), 2033–2049 (2007)MATHCrossRefGoogle Scholar
  10. 10.
    Balaprakash, P., Birattari, M., Stützle, T.: Improvement strategies for the F-Race algorithm: Sampling design and iterative refinement. In: Bartz-Beielstein, T., Blesa Aguilera, M.J., Blum, C., Naujoks, B., Roli, A., Rudolph, G., Sampels, M. (eds.) HCI/ICCV 2007. LNCS, vol. 4771, pp. 108–122. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto evolutionary algorithm. IEEE Transactions on Evolutionary Computation 3(4), 257–271 (1999)CrossRefGoogle Scholar
  12. 12.
    Fonseca, C.M., Paquete, L., López-Ibáñez, M.: An improved dimension-sweep algorithm for the hypervolume indicator. In: IEEE Congress on Evolutionary Computation, July 2006, pp. 1157–1163. IEEE Press, Los Alamitos (2006)CrossRefGoogle Scholar
  13. 13.
    Lust, T., Teghem, J.: Two-phase Pareto local search for the biobjective traveling salesman problem. Journal of Heuristics (2009) (to appear)Google Scholar
  14. 14.
    Conover, W.J.: Practical Nonparametric Statistics, 3rd edn. John Wiley & Sons, New York (1999)Google Scholar
  15. 15.
    Grunert da Fonseca, V., Fonseca, C.M., Hall, A.O.: Inferential performance assessment of stochastic optimisers and the attainment function. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 213–225. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  16. 16.
    López-Ibáñez, M., Paquete, L., Stützle, T.: Exploratory analysis of stochastic local search algorithms in biobjective optimization. In: Bartz-Beielstein, T., et al. (eds.) Experimental Methods for the Analysis of Optimization Algorithms, Springer, Heidelberg (to appear 2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jérémie Dubois-Lacoste
    • 1
  • Manuel López-Ibáñez
    • 1
  • Thomas Stützle
    • 1
  1. 1.IRIDIA, CoDEUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations