A Math-Heuristic Algorithm for the DNA Sequencing Problem

  • Marco Caserta
  • Stefan Voß
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6073)


One of the key issues in designing an algorithm in general, and a metaheuristic in particular, concerns the fine tuning of one or more algorithmic parameters. In this paper, we present a simple mechanism aimed at automatically fine tuning a parameter of a novel hybrid algorithm. We design an algorithm that uses mathematical programming techniques in a metaheuristic fashion and we exploit ideas from the corridor method to drive the use of a standard MIP solver over different portions of the solution space. The size and the boundaries of such portions of the solution space are determined by the width of the corridor built around an incumbent solution. In turn, the corridor width is automatically fine tuned by the proposed mechanism, taking into account the evolution of the search process. The proposed algorithm is then tested on a well known problem from computational biology and results on a set of benchmark instances are provided.


Solution Space Benchmark Instance Incumbent Solution Orienteering Problem Short Computational Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sniedovich, M., Voß, S.: The Corridor Method: A Dynamic Programming Inspired Metaheuristic. Control and Cybernetics 35(3), 551–578 (2006)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Maniezzo, V., Stützle, T., Voß, S. (eds.): Matheuristics: Hybridizing Metaheuristics and Mathematical Programming. Springer, Berlin (2009)zbMATHGoogle Scholar
  3. 3.
    Caserta, M., Voß, S.: Metaheuristics: Intelligent Problem Solving. In: Maniezzo, V., Stützle, T., Voß, S. (eds.) Matheuristics: Hybridizing Metaheuristics and Mathematical Programming, pp. 1–38. Springer, Berlin (2009)Google Scholar
  4. 4.
    Caserta, M., Quiñonez Rico, E.: A Cross Entropy-Lagrangean Hybrid Algorithm for the Multi-Item Capacitated Lot Sizing Problem with Setup Times. Computers & Operations Research 36(2), 530–548 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Adenso-Diaz, B., Laguna, M.: Fine-tuning of Algorithms Using Fractional Experimental Designs and Local Search. Operations Research 54, 99–114 (2006)zbMATHCrossRefGoogle Scholar
  6. 6.
    Coy, S.P., Golden, B.L., Rungen, G.C., Wasil, E.A.: Using Experimental Design to Find Effective Parameter Settings for Heuristics. Journal of Heuristics 7, 77–97 (2000)CrossRefGoogle Scholar
  7. 7.
    Park, M.W., Kim, Y.D.: A Systematic Procedure for Setting Parameters in Simulated Annealing Algorithms. Computers & Operations Research 25(3), 207–217 (1998)zbMATHCrossRefGoogle Scholar
  8. 8.
    Xu, J., Chiu, S.Y., Glover, F.: Fine-tuning a Tabu Search Algorithm with Statistical Tests. International Transactions in Operational Research 5(3), 233–244 (1998)CrossRefGoogle Scholar
  9. 9.
    Parson, R., Johnson, M.E.: A Case Study in Experimental Design Applied to Genetic Algorithms with Applications to DNA Sequence Assembly. American Journal of Mathematical and Management Sciences 17(3), 369–396 (1997)Google Scholar
  10. 10.
    Battiti, R., Tecchioli, G.: The Reactive Tabu Search. ORSA Journal on Computing 6(2), 126–140 (1994)zbMATHGoogle Scholar
  11. 11.
    Sanger, F., Nicklen, S., Chase, A.R.: DNA Sequencing with Chain Terminating Inhibitors. Proceedings National Academy of Science 74(12), 5463–5468 (1977)CrossRefGoogle Scholar
  12. 12.
    Ronaghi, M., Uhlzn, M., Nyrzn, P.: DNA SEQUENCING: A Sequencing Method Based on Real-Time Pyrophosphate. Science 281(5375), 363–365 (1998)CrossRefGoogle Scholar
  13. 13.
    Drmanac, R., Crkvenjakov, R.: Yugoslav Patent Application 570 (1987)Google Scholar
  14. 14.
    Southern, E.: United Kingdom Patent Application GB8810400 (1988)Google Scholar
  15. 15.
    Bains, W., Smith, G.C.: A Novel Method for Nucleid Acid Sequence Determination. Journal of Theoretical Biology 135, 303–307 (1988)CrossRefGoogle Scholar
  16. 16.
    Macevicz, S.C.: International Patent Application PS US8904741 (1989)Google Scholar
  17. 17.
    Pevzner, P.A., Lipshutz, R.J.: Towards DNA Sequencing Chips. In: Prívara, I., Rovan, B., Ružička, P. (eds.) MFCS 1994. LNCS, vol. 841, pp. 143–158. Springer, Heidelberg (1994)Google Scholar
  18. 18.
    Pevznev, P.A.: l-tuple DNA Sequencing: Computer Analysis. Journal of Biomolecular Structure and Dynamics 7, 63–73 (1989)Google Scholar
  19. 19.
    Nikolakopoulos, A., Sarimveis, H.: A Metaheuristic Approach for the Sequencing by Hybridization Problem with Positive and Negative Errors. Engineering Applications of Artificial Intelligence 21(2), 247–258 (2008)CrossRefGoogle Scholar
  20. 20.
    Blazewicz, J., Oguz, C., Swiercz, A., Weglarz, J.: DNA Sequencing by Hybridization via Genetic Search. Operations Research 54(6), 1185–1192 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Bui, T.N., Youssef, W.A.: An Enhanced Genetic Algorithm for DNA Sequencing by Hybridization with Positive and Negative Errors. In: Deb, K., Poli, R., Banzahf, W., Beyer, H., Burke, E., Darwen, P., Dasgupta, D., Floreano, D., Foster, J., Harman, M., Holland, O., Lanzi, P., Spector, L., Tettamanzi, A., Thierens, D., Tyrrell, A. (eds.) GECCO 2004. LNCS, vol. 3103, pp. 908–919. Springer, Heidelberg (2004)Google Scholar
  22. 22.
    Blazewicz, J., Formanowicz, P., Kasprzak, K., Markiewicz, W.T., Weglarz, J.: Tabu Search for DNA Sequencing with False Negative and False Positive. European Journal of Operational Research 125, 257–265 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Blazewicz, J., Kasprzak, M.: Complexity of DNA Sequencing by Hybridization. Theoretical Computer Science 290, 1459–1473 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Blazewicz, J., Formanovicz, P., Kasprzak, M., Markiewicz, W.T., Weglarz, J.: DNA Sequencing with Positive and Negative Errors. Journal of Computational Biology 6, 113–126 (1999)CrossRefGoogle Scholar
  25. 25.
    Caserta, M., Voß, S.: A Hybrid Algorithm for the DNA Sequencing Problem. Technical report, Institute of Information Systems, University of Hamburg (2009)Google Scholar
  26. 26.
    Blazewicz, J., Glover, F., Kasprzak, M.: DNA Sequencing – Tabu and Scatter Search Combined. INFORMS Journal on Computing 16(3), 232–240 (2004)CrossRefMathSciNetGoogle Scholar
  27. 27.
    Blazewicz, J., Kasprzak, M., Kuroczycki, W.: Hybrid Genetic Algorithm for DNA Sequencing with Errors. Journal of Heuristics 8, 495–502 (2002)zbMATHCrossRefGoogle Scholar
  28. 28.
    Blazewicz, J., Glover, F., Kasprzak, K., Markiewicz, W.T., Oguz, C., Rebholz-Schuhmann, D., Swiercz, A.: Dealing with Repetitions in Sequencing by Hybridization. Computational Biology and Chemistry 30, 313–320 (2006)zbMATHCrossRefGoogle Scholar
  29. 29.
    Tsiligirides, T.: Heuristic Methods Applied to Orienteering. Journal of the Operational Research Society 35(9), 797–809 (1984)Google Scholar
  30. 30.
    Lougee-Heimer, R.: The Common Optimization INterface for Operations Research. IBM Journal of Research and Development 47(1), 57–66 (2003)CrossRefGoogle Scholar
  31. 31.
    Fischetti, M., Lodi, A.: Local Branching. Mathematical Programming B 98, 23–47 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Hansen, P., Mladenović, N.: An Introduction to Variable Neighborhood Search. In: Voß, S., Martello, S., Osman, I., Roucairol, C. (eds.) Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization, pp. 433–458. Kluwer, Boston (1999)Google Scholar
  33. 33.
    National Center for Biotechnology Information (May 2009),
  34. 34.
    Needelman, S.B., Wunsch, C.D.: A General Method Applicable to the Search for Similarities of the Aminoacid Sequence of Two Proteins. Journal of Molecular Biology 48, 443–453 (1970)CrossRefGoogle Scholar
  35. 35.
    Gentleman, C., Carey, V.J., Bates, D.M., Bolstad, B., Dettling, M., Dudoit, S., Ellis, B., Gautier, L., Ge, Y., Gentry, J., Hornik, K., Hothorn, T., Huber, W., Iacus, S., Irizarry, R., Leisch, F., Li, C., Maechler, M., Rossini, A.J., Sawitzki, G., Smith, C., Smyth, G., Tierney, L., Yang, J.Y.H., Zhang, J.: Bioconductor: Open Software Development for Computational Biology and Bioinformatics. Genome Biology 5, R80 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Marco Caserta
    • 1
  • Stefan Voß
    • 1
  1. 1.Institute of Information Systems (IWI)University of HamburgHamburgGermany

Personalised recommendations