Advertisement

A Column Generation Heuristic for the General Vehicle Routing Problem

  • Asvin Goel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6073)

Abstract

This paper presents a column generation heuristic for the general vehicle routing problem (GVRP), a combined load acceptance and rich vehicle routing problem incorporating various real-life complexities. Computational experiments show that proposed column generation heuristic is competitive with heuristics previously presented for the GVRP.

Keywords

Column Generation Vehicle Route Problem Linear Relaxation Delivery Problem Large Neighbourhood Search 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Goel, A.: Fleet Telematics - Real-time Management and Planning of Commercial Vehicle Operations. In: Operations Research/Computer Science Interfaces, vol. 40. Springer, Heidelberg (2007)Google Scholar
  2. 2.
    Goel, A., Gruhn, V.: A general vehicle routing problem. European Journal of Operational Research 191(3), 650–660 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Toth, P., Vigo, D.: The Vehicle Routing Problem. In: SIAM Monographs on Discrete Mathematics and Applications, Philadelphia (2002)Google Scholar
  4. 4.
    Bräysy, O., Gendreau, M.: Vehicle routing problem with time windows, Part I: Route construction and local search algorithms. Transportation Science 39(1), 104–118 (2005)CrossRefGoogle Scholar
  5. 5.
    Bräysy, O., Gendreau, M.: Vehicle routing problem with time windows, Part II: Metaheuristics. Transportation Science 39(1), 119–139 (2005)CrossRefGoogle Scholar
  6. 6.
    Desrochers, M., Desrosiers, J., Solomon, M.: New optimization algorithm for the vehicle routing problem with time windows. Operations Research 40(2), 342–354 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Chen, Z.L., Xu, H.: Dynamic column generation for dynamic vehicle routing with time windows. Transportation Science 40(1), 74–88 (2006)CrossRefGoogle Scholar
  8. 8.
    Baldacci, R., Battarra, M., Vigo, D.: Routing a heterogeneous fleet of vehicles. Technical report DEIS OR.INGCE 2007/1, DEIS, University Bologna, Italy (2007)Google Scholar
  9. 9.
    Choi, E., Tcha, D.W.: A column generation approach to the heterogeneous fleet vehicle routing problem. Computers & Operations Research 34, 2080–2095 (2007)zbMATHCrossRefGoogle Scholar
  10. 10.
    Mitrović-Minić, S.: Pickup and delivery problem with time windows: A survey. Technical report TR 1998-12, School of Computing Science, Simon Fraser University, Burnaby, BC, Canada (1998)Google Scholar
  11. 11.
    Desaulniers, G., Desrosiers, J., Erdmann, A., Solomon, M., Soumis, F.: VRP with pickup and delivery. In: Toth, P., Vigo, D. (eds.) The Vehicle Routing Problem. SIAM Monographs on Discrete Mathematics and Applications, Philadelphia, pp. 225–242 (2002)Google Scholar
  12. 12.
    Savelsbergh, M., Sol, M.: DRIVE: dynamic routing of independent vehicles. Operations Research 46, 474–490 (1998)zbMATHCrossRefGoogle Scholar
  13. 13.
    Savelsbergh, M., Sol, M.: The general pickup and delivery problem. Transportation Science 29(1), 17–30 (1995)zbMATHCrossRefGoogle Scholar
  14. 14.
    Xu, H., Chen, Z.L., Rajagopal, S., Arunapuram, S.: Solving a practical pickup and delivery problem. Transportation Science 37(3), 347–364 (2003)CrossRefGoogle Scholar
  15. 15.
    Feillet, D., Dejax, P., Gendreau, M.: Traveling Salesman Problems with Profits. Transportation Science 39(2), 188–205 (2005)CrossRefGoogle Scholar
  16. 16.
    Schönberger, J., Kopfer, H., Mattfeld, H.: A combined approach to solve the pickup and delivery selection problem. In: Operations Research Proceedings 2002, pp. 150–155. Springer, Heidelberg (2002)Google Scholar
  17. 17.
    Powell, W., Snow, W., Cheung, R.: Adaptive labeling algorithms for the dynamic assignment problem. Transportation Science 34(1), 50–66 (2000)zbMATHCrossRefGoogle Scholar
  18. 18.
    Campbell, A., Savelsbergh, M.: Efficient insertion heuristics for vehicle routing and scheduling problems. Transportation Science 38(3), 369–378 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Asvin Goel
    • 1
    • 2
  1. 1.MIT-Zaragoza International Logistics ProgramZaragoza Logistics CenterZaragozaSpain
  2. 2.Applied Telematics/e-Business Group, Department of Computer ScienceUniversity of LeipzigLeipzigGermany

Personalised recommendations