Feedback in Context: Supporting the Evolution of IT-Ecosystems

  • Kurt Schneider
  • Sebastian Meyer
  • Maximilian Peters
  • Felix Schliephacke
  • Jonas Mörschbach
  • Lukas Aguirre
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6156)

Abstract

IT ecosystems consist of dynamically interacting subsystems, components, and services containing software. Companies provide parts of IT ecosystems, e.g. for airports, train stations, and shopping malls. Due to the complex interaction of subsystems, overall behaviour cannot be completely anticipated or engineered. IT ecosystems constantly evolve by adapting to new user requirements and to changes in their environment. On-going improvement requires feedback from users. However, feedback is not easy to get. This paper presents an approach facilitating feedback in context. It is gathered by mobile devices like Smartphones. Effective support for evolution needs to cover (1) identifying the component or subsystem a user wants to address, (2) the ability to send feedback at very low effort and cost, and (3) support for interpreting incoming feedback. We present an architecture, a framework, and an application example to put stakeholder feedback into context. Contextualized feedback supports providers in driving the IT ecosystem evolution.

Keywords

IT ecosystem feedback context architecture improvement cycle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Singer, L., Brill, O., Meyer, S., Schneider, K.: Leveraging Rule Deviations in IT Ecosystems for Implicit Requirements Elicitation. In: Second International Workshop on Managing Requirements Knowledge (MaRK 2009) at RE 2009 (September 2009)Google Scholar
  2. 2.
    Bosch, J.: Software Product Lines to Software Ecosystems. In: 13th International Software Product Line Conference (SPLC 2009), San Francisco, CA, August 24-28 (2009)Google Scholar
  3. 3.
    Lentz, J.L., Bleizeffer, T.M.: IT Ecosystems: Evolved Complexity and Unintelligent Design. In: CHIMIT 2007, Cambridge, MA, USA, March 30-31 (2007)Google Scholar
  4. 4.
    Karlsson, L., Dahlstedt, Å.G., Natt och Dag, J., Regnell, B., Persson, A.: Challenges in Market-Driven Requirements Engineerng - an Industrial Interview Study. In: Proceedings of Eighth International Workshop on Requirements Engineering: Foundation for Software Quality, Essen, Germany (2002)Google Scholar
  5. 5.
    Schneider, K.: Anforderungsklärung mit Videoclips. In: Proceedings of Software Engineering 2010, Paderborn, Germany (2010)Google Scholar
  6. 6.
    Davenport, T.G.P.: Knowledge Management Case Book - Best Practises. Publicis MCD, John Wiley & Sons (2000)Google Scholar
  7. 7.
    Brill, O., Schneider, K., Knauss, E.: Videos vs. Use Cases: Can Videos Capture More Requirements Under Time Pressure? In: Proceedings of REFSQ 2010, Essen, Germany (2010)Google Scholar
  8. 8.
    Hughes, J., O’Brien, J., Rodden, T., Rouncefield, M., Sommerville, I.: Presenting ethnography in the requirements process. In: Second IEEE International Symposium on Requirements Engineering, March 27-29, IEEE Computer Society, York (1995)Google Scholar
  9. 9.
    Fickas, S., Feather, M.S.: Requirements monitoring in dynamic environments. In: Proc. Second IEEE International Symposium on Requirements Engineering, March 27-29, pp. 140–147 (1995)Google Scholar
  10. 10.
    Creighton, O., Ott, M., Brügge, B.: Software Cinema: Video-based Requirements Engineering. In: 14th IEEE Internat. Requirements Engineering Conference (2006)Google Scholar
  11. 11.
    Zachos, K., Maiden, N.: ART-SCENE: Enhancing Scenario Walkthroughs With Multi-Media Scenarios. In: Proceedings of Requirements Engineering Conference (2004)Google Scholar
  12. 12.
    Zachos, K., Maiden, N., Tosar, A.: Rich-Media Scenarios for Discovering Requirements. IEEE Software 22, 89–97 (2005)CrossRefGoogle Scholar
  13. 13.
    Sitou, W., Spanfelner, B.: Towards Requirements Engineering for Context Adaptive Systems. In: COMPSAC 2007: Proceedings of the 31st Annual International Computer Software and Applications Conference, Washington, DC, USA, pp. 593–600. IEEE Computer Society, Los Alamitos (2007)Google Scholar
  14. 14.
    Dey, A., Abowd, G., Salber, D.: A Context-based Infrastructure for Smart Environments. In: Proceedings of the 1st International Workshop on Managing Interactions in Smart Environments (MANSE 1999), pp. 114–128 (1999)Google Scholar
  15. 15.
    Sutcliffe, A., Fickas, S., Sohlberg, M.M.: PC-RE: a method for personal and contextual requirements engineering with some experience. Requirements Engineering 11(3), 157–173 (2006)CrossRefGoogle Scholar
  16. 16.
    Fox, S., Karnawat, K., Mydland, M., Dumais, S., White, T.: Evaluating implicit measures to improve web search. ACM Trans. Inf. Syst. 23(2), 147–168 (2005)CrossRefGoogle Scholar
  17. 17.
    Dupret, G., Liao, C.: A model to estimate intrinsic document relevance from the clickthrough logs of a web search engine. In: WSDM 2010: Proceedings of the third ACM international conference on Web search and data mining, pp. 181–190. ACM, New York (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Kurt Schneider
    • 1
  • Sebastian Meyer
    • 1
  • Maximilian Peters
    • 1
  • Felix Schliephacke
    • 1
  • Jonas Mörschbach
    • 1
  • Lukas Aguirre
    • 1
  1. 1.Software Engineering GroupLeibniz Universität HannoverHannoverGermany

Personalised recommendations