Automatic Corneal Nerves Recognition for Earlier Diagnosis and Follow-Up of Diabetic Neuropathy

  • Ana Ferreira
  • António Miguel Morgado
  • José Silvestre Silva
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6112)


Peripheral diabetic neuropathy is a major cause of chronic disability in diabetic patients. Morphometric parameters of corneal nerves may be the basis of an ideal method for early diagnosis and assessment of diabetic neuropathy. We developed a fully automatic algorithm for corneal nerve segmentation and morphometric parameters extraction. Luminosity equalization was done using local methods. Images structures were enhanced through phase-shift analysis, followed by Hessian matrix computation for structure classification. Nerves were then reconstructed using morphological methods. The algorithm was evaluated using 10 images of corneal nerves, by comparing with manual tracking. The average percent of nerve correctly segmented was 88.5% ± 7.2%. The percent of false nerve segments was 3.9% ± 2.2%. The average difference between automatic and manual nerve lengths was -28.0 ± 30.3 μm. Running times were around 3 minutes. The algorithm produced good results similar to those reported in the literature.


Corneal nerves image segmentation diabetic neuropathy confocal microscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mokdad, A.H., Ford, E.S., Bowman, B.A., Nelson, D.E., Engelgau, M.M., Vinicor, F., Marks, J.S.: Diabetes trends in the US: 1990-1998. Diabetes Care 23, 1278–1283 (2000)CrossRefGoogle Scholar
  2. 2.
    Gooch, C., Podwall, D.: The Diabetic Neuropathies. The Neurologist 10, 311–322 (2004)CrossRefGoogle Scholar
  3. 3.
    Vinik, A.I., Park, T.S., Stansberry, K.B., Pittenger, G.L.: Diabetic neuropathies. Diabetologia 43, 957–973 (2000)CrossRefGoogle Scholar
  4. 4.
    Park, T.S., Park, J.H., Baek, H.S.: Can diabetic neuropathy be prevented? Diabetes research and clinical practice 66, S53–S56 (2004)CrossRefGoogle Scholar
  5. 5.
    Rahman, M., Griffin, S.J., Rathmann, W., Wareham, N.J.: How should peripheral neuropathy be assessed in people with diabetes in primary care? A population-based comparison of four measures. Diabetic Medicine 20, 368–374 (2003)CrossRefGoogle Scholar
  6. 6.
    Sullivan, K.A., Feldman, E.L.: New developments in diabetic neuropathy. Current Opinion in Neurology 18, 586–590 (2005)CrossRefGoogle Scholar
  7. 7.
    Malik, R.A., Veves, A., Walker, D., Siddique, I., Lye, R.H., Schady, W., Boulton, A.J.M.: Sural nerve fibre pathology in diabetic patients with mild neuropathy: relationship to pain, quantitative sensory testing and peripheral nerve electrophysiology. Acta Neuropathologica 101, 367–374 (2001)Google Scholar
  8. 8.
    Holland, N.R., Stocks, A., Hauer, P., Cornblath, D.R., Griffin, J.W., McArthur, J.C.: Intraepidermal nerve fiber density in patients with painful sensory neuropathy. Neurology 48, 708–711 (1997)Google Scholar
  9. 9.
    Masters, B.R., Bohnke, M.: Three-dimensional confocal microscopy of the living human eye. Annual Review of Biomedical Engineering 4, 69–91 (2002)CrossRefGoogle Scholar
  10. 10.
    Malik, R.A., Kallinikos, P., Abbott, C.A., van Schie, C.H.M., Morgan, P., Efron, N., Boulton, A.J.M.: Corneal confocal microscopy: a non-invasive surrogate of nerve fibre damage and repair in diabetic patients. Diabetologia 46, 683–688 (2003)Google Scholar
  11. 11.
    Kallinikos, P., Berhanu, M., O’Donnell, C., et al.: Corneal Nerve Tortuosity in Diabetic Patients with Neuropathy. Invest. Ophthalmol. Vis. Sci. 45, 418–422 (2004)CrossRefGoogle Scholar
  12. 12.
    Popper, M., Quadrado, M.J., Morgado, A.M., Murta, J.N., Van Best, J.A., Muller, L.J.: Subbasal nerves and highly reflective cells in corneas of diabetic patients: In vivo evaluation by confocal microscopy. Investigative Ophthalmology & Visual Science 46, 879 (2005)Google Scholar
  13. 13.
    Midena, E., Brugin, E., Ghirlando, A., Sommavilla, M., et al.: Corneal diabetic neuropathy: A confocal microscopy study. Journal of Refractive Surgery 22, S1047–S1052 (2006)Google Scholar
  14. 14.
    Grupcheva, C.N., Wong, T., Riley, A.F., et al.: Assessing the sub-basal nerve plexus of the living healthy human cornea by in vivo confocal microscopy. Clinical and Experimental Ophthalmology 30, 187–190 (2002)CrossRefGoogle Scholar
  15. 15.
    Patel, D.V., McGhee, C.N.J.: Mapping of the Normal Human Corneal Sub-Basal Nerve Plexus by In Vivo Laser Scanning Confocal Microscopy. Invest. Ophthalmol. Vis. Sci. 46, 4485–4488 (2005)CrossRefGoogle Scholar
  16. 16.
    Scarpa, F., Grisan, E., Ruggeri, A.: Automatic Recognition of Corneal Nerve Structures in Images from Confocal Microscopy. Investigative Ophthalmology & Visual Science 49, 4801–4807 (2008)CrossRefGoogle Scholar
  17. 17.
    McLaren, J.W., Nau, C.B., Kitzmann, A.S., et al.: Keratocyte Density: Comparison Of Two Confocal Microscopes. Eye Contact Lens 31, 28–33 (2004)CrossRefGoogle Scholar
  18. 18.
    Gonzalez, R.C., Woods, R.E., Eddins, S.L.: Digital Image Processing Using Matlab. Gatesmark Publishing (2009)Google Scholar
  19. 19.
    Kovesi, P.: Symmetry and Asymmetry from Local Phase. In: Tenth Australian Joint Conference on Artificial Intelligence, pp. 185–190 (1997)Google Scholar
  20. 20.
    Frangi, A.F., Niessen, W.J., et al.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998)Google Scholar
  21. 21.
    Beichel, R., Pock, T., Janko, C., Zotter, R., et al.: Liver Segment Approximation in CT Data for Surgical Resection Planning. In: SPIE Medical Imaging 2004: Image Processing, vol. 5370, pp. 1435–1446 (2004)Google Scholar
  22. 22.
    Salem, N.M., Salem, S.A., Nandi, A.K.: Segmentation of Retinal Blood Vessels Based on Analysis of the Hessian Matrix and Clustering Algorithm. In: 15th European Signal Processing Conference, pp. 428–432 (2007)Google Scholar
  23. 23.
    Bland, J.M., Altman, D.G.: Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1, 307–310 (1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Ana Ferreira
    • 1
  • António Miguel Morgado
    • 1
    • 2
  • José Silvestre Silva
    • 2
    • 3
  1. 1.IBILI – Institute of Biomedical Research in Light and Image, Faculty of MedicineUniversity of CoimbraPortugal
  2. 2.Department of Physics, Faculty of Sciences and TechnologyUniversity of CoimbraPortugal
  3. 3.Instrumentation Center, Faculty of Sciences and TechnologyUniversity of CoimbraPortugal

Personalised recommendations